Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Коэффициент распределения в системе масло/вода




Скорость диффузии веществ через слизистую оболочку тонкой кишки пропорциональна величине коэффициента распределения в системе масло/вода. Вещества нерастворимые в липидах, даже в форме незаряженных молекул не проникают через слизистую кишечника. Так, ксилоза - низкомолекулярное соединение, относящееся к группе неэлектролитов, но нерастворимое в липидах, практически не поступает во внутренние среды организма при приеме через рот. Некоторые ксенобиотики хорошо растворяющиеся в жирах, тем не менее также плохо резорбируются в кишечнике. В этих случаях, как правило, выявляется их чрезвычайно низкая растворимость в воде.

Размеры молекулы

Проникновение веществ через слизистую оболочку существенно зависит от размеров молекул. Как правило, с увеличением молекулярной массы проникновение соединений через слизистую уменьшается. Например, инулин, манитол медленнее всасываются, чем низкомолекулярные спирты. Некоторые высокомолекулярные жирорастворимые вещества, хуже пенетрируют в кишке, чем низкомолекулярные водо-растворимые (например, мочевина). Однако в кишечнике новорожденных млекопитающих (крысята, поросята и т.д.) отмечается резорбция даже высокомолекулярных соединений, таких как поливинилпирролидон (МВ 160000), инсулин, антитела.

Заряд молекулы

Всасывание ионов зависит от их строения и величины заряда. В то время как одновалентные ионы (Cl-, NO2-, NO3-, Na+, K+, Tl+) легко проникают через слизистую, для ионов с большим зарядом (Mg2+, Pb2+, Fe3+, SO42-) этот процесс затруднен. Исключение составляют ионы кальция. У человека квота резорбции иона составляет около 30% при поступлении в количестве около 1 г в сутки. Трехвалентные ионы вообще не резорбируются в кишечнике.

Отделы кишечника

Все отделы кишечника принимают участие в резорбции ксенобиотиков. С наивысшей скоростью всасывание происходит в тонкой кишке. В среднем период "полувсасывания" веществ у крысы составляет около 5 минут. Для веществ, поступающих через рот, время пребывания их в желудке в целом отсрочивает резорбцию, поэтому скорость перехода веществ из желудка в двенадцатиперстную кишку имеет решающее значение. Холодные растворы быстрее покидают желудок. В этой связи холодные растворы токсикантов порой оказываются более токсичными, чем теплые.

Резорбция в толстой кишке происходит сравнительно медленно. Этому способствует не только меньшая площадь поверхности слизистой этого отдела, но и, как правило, более низкая, в сравнении с вышележащими отделами, концентрация токсикантов в просвете кишки.

Кровоснабжение

Кишечник хорошо кровоснабжаемый орган. Вещества, проникающие через слизистую оболочку, быстро уносятся оттекающей кровью, поэтому скорость кровотока здесь не является фактором, лимитирующим процесс резорбции.

Содержимое кишечника

Потребленная пища модифицирует всасывание токсикантов в кишечнике. Содержимое кишки может выступать в качестве инертного наполнителя, в который включено вещество и из которого замедляется его резорбция, при этом квота всасывающегося вещества в целом остается неизменной.

Желчные кислоты, обладая свойствами эмульгаторов, способствуют всасыванию жиров, однако, усиливают ли они резорбцию жирорастворимых ксенобиотиков остается неизвестным. Установлено, что проникновение в кровь из кишечника красителя фенолрот ускоряется при одновременном назначении дезоксихолевой кислоты. Не исключено, что желчные кислоты влияют и на резорбцию электролитов.

Микрофлора кишечника может вызвать химическую модификацию молекул токсикантов. Так, у человека описана способность лактобактерий, энтерококков, клостридий кишечника вызывать деметилирование метамфетамина. Некоторое токсикологическое значение может иметь инициируемый кишечной флорой процесс восстановления нитратов до нитритов особенно у грудных детей. Образующиеся ионы NO2- проникают в кровь и вызывают образование метгемоглобина с соответствующими пагубными последствиями.

E. coli содержит ферменты, имеющие значение для судьбы токсикантов в организме. Так, под влиянием этих энзимов, в кишечнике возможно расщепление глюкуронидов. Конъюгаты ксенобиотиков с глюкуроновой кислотой (конечные метаболиты веществ, выделяющиеся в кишечник с желчью) - плохо растворимые в жирах и хорошо растворимые в воде соединения, в связи с чем резорбция их в кишечнике затруднена. После отщепления глюкуроновой кислоты липофильность отделившихся молекул существенно возрастает, и они приобретают способность к обратной резорбции в кровоток. Это явление может лежать в основе феномена печеночно-кишечной циркуляции токсиканта.

Резорбция в легких

Легкие - орган, предназначенный для осуществления обмена веществом, в частности жизненно важными газами, между организмом и окружающей средой. Помимо вдыхаемого О2 и другие вещества, находящиеся в форме газа или пара, могут легко проникать через легкие в кровоток. Для этого токсикант должен преодолеть лишь тонкий капиллярно-альвеолярный барьер. Благоприятным условием всасывания веществ является также большая площадь поверхности легких, составляющая у человека в среднем 70 м2. Процесс диффузии кислорода через альвеолярно-капиллярный барьер можно описать уравнением:

ДM = Др 1/2 (SA + SC) n-1 , где

ДM - скорость диффузии (мл/мин);

- абсорбционный коэффициент Бунзена;

Др - коэффициент диффузии кислорода;

SA - площадь поверхности легочного эпителия;

SC - площадь поверхности эндотелия альвеолярно-капиллярного барьера;

n - средняя эффективная толщина альвеолярно-капиллярного барьера.

Для организма человека эти характеристики в среднем составляют: SA - 77 м2; SC - 70 м2; n - 0,5 - 0,7 мкм. При подстановке в уравнение величин и Др для плазмы крови получаем диффузионную способность легких для кислорода ДM = 3,9 мл/мин.

Продвижение газов по дыхательным путям сопряжено с их частичной адсорбцией на поверхности трахеи и бронхов. Сайт депонирования ингалируемых газов определяется степенью их растворимости в тонком слое жидкости, выстилающей слизистую дыхательных путей и альвеолярный эпителий. Чем хуже растворяется вещество в воде, тем глубже проникает оно в легкие (таблица 8).

Таблица 8. Захват паров химических веществ слизистой трахеи кролика (in vitro). (По данным V. Fiserova-Bergerova, 1985)

Вещество Степень захвата (%)*
Метилен хлорид 2,5
Галотан 6,7
Фреон-12 6,9
Трихлорэтилен 8,3
Толуол 10,6
Этиленоксид 13,9
Стирол 17,6
Этил ацетат 17,7
Ацетон 21,9
Амиловый спирт 41,1
Ацетил ацетон 45,8
Бутанол 48,2
Пропанол 54,0
Этанол 58,2
Диоксан 59,5
Метанол 68,6

* Степень захвата (Р) рассчитывали как разницу входящей и выходящей из трахеи концентраций (С) газов:

Р = С/Свх 100 %

Ингаляционно в организм могут поступать не только газы и пары, но и аэрозоли, которые также достаточно быстро могут всасываться в кровь. В таблице 9 представлена сравнительная способность некоторых веществ резорбироваться в легких крыс при интратрахеальном введении в форме аэрозоля.

Таблица 9. Легочная резорбция различных типов химических веществ после интратрахеального введения крысам (t50 - время, необходимое для резорбции 50% введенного вещества)

Соединения Молекулярная масса t50 (мин)
Нерастворимые в жирах вещества: -манитол -сахароза -инулин -декстран 182 342 5000 75000 65 87 225 1670
Нейтральные молекулы: -сульфизоксазол -мочевина -эритритол -этамбутол 267 60 122 204 3 4 33 38
Слабые кислоты: -салициловая кислота -фенобарбитал -р-ацуетиламингиппуровая кислота -бензилпенициллин 138 232 236 667 1 1 70 36
Слабые основания: -эритромицин -сульфагуанидин -тетраэтиламмоний 734 232 130 13 44 65

Резорбция газов

Если человек или экспериментальное животное в течение определенного времени вдыхает воздух, содержащий некое вещество в постоянной концентрации (например, 4% эфир), то процесс его проникновения и распределения в организме может быть представлен в виде нескольких последовательных этапов (рисунок 2).

Рисунок 2. Процесс проникновения и распространения газов в организме

В конечном итоге в тканях (в частности в ЦНС) аккумулируется определенная концентрация токсиканта, при которой формируется токсический процесс соответствующей степени тяжести (оглушенность, наркоз, кома). При достижении состояния равновесия в системе продолжение ингаляции газа (пара) в прежней концентрации не приведет к увеличению содержания ксенобиотика в тканях.

Вентиляция легких

Для резорбции вдыхаемый газ должен вступить в контакт с альвеолярной поверхностью легких. Альвеолы расположены глубоко в легочной ткани, поэтому путем простой диффузии газ не сможет быстро преодолеть расстояние от полости носа или ротового отверстия до стенок альвеол. У человека и других позвоночных, дышащих легкими, имеется механизм, с помощью которого осуществляется механическое перемешивание (конвекция) газов в дыхательных путях и легких и обеспечивается постоянный обмен газами между внешней средой и организмом. Этот механизм - вентиляции легких - последовательно сменяющие друг друга акты вдоха и выдоха.

При нормальной частоте и глубине дыхания легочная вентиляция достаточна для того, чтобы альвеолярную концентрацию газа (Са) в течение 2 минут от значение 0 довести до значения 0,95 Си, то есть 95% от концентрации в ингалируемом воздухе.

Таким образом, вентиляция обеспечивает очень быструю доставку газа из окружающей среды к поверхности альвеолярных мембран. Посредством сознательного или бессознательного усиления или ослабления вентиляции возможно многократное уменьшение или увеличение времени "уравнивания концентраций". Одновременно с вентиляцией легких осуществляются и другие процессы: растворение газа в стенке альвеолы, диффузия газа в кровь, конвекция в кровяном русле, диффузия в ткани. Вследствие этого динамическое равновесие в системе распределения газов в воздухе, крови и тканях устанавливается лишь спустя некоторое время.

В тот момент, когда парциальное давление газа в окружающем, а затем и альвеолярном воздухе становиться ниже, чем в крови (пострадавшего выносят из зоны заражения), процесс меняет направление и газ из организма устремляется в просвет альвеол и во внешнюю среду. С помощью форсированной вентиляции легких можно обеспечить быстрое снижение концентрации газообразного вещества в циркулирующей крови (и тканях). Эту возможность используют в токсикологии при оказании помощи отравленным некоторыми газообразными или летучими веществами, предлагая пострадавшим ингалировать карбоген (воздух с повышенным содержанием СО2), стимулирующий вентиляцию.

Поступление в кровь

Переход газа из альвеолы в кровоток осуществляется посредством диффузии. При этом молекула соединения переходит из газообразной среды в жидкую фазу. В этой связи поступление вещества зависит от следующих факторов:

1. Растворимости газа в крови;

2. Градиента концентрации газа между альвеолярным воздухом и кровью;

3. Интенсивности кровотока;

4. Состояния легочной ткани.

1. Растворимость веществ в крови отличается от растворимости в воде и порой существенно. Это связано с наличием растворенных в плазме крови её составных частей (соли, липиды, углеводы, белки) и форменных элементов (лейкоциты, эритроциты). Сравнительная характеристика растворимости некоторых неэлектролитов в различных средах представлена на таблице 10.

Таблица 10. Коэффициенты распределения некоторых неэлектролитов (t = 37оС; Р = 101,3 кРа)

Вещество Кровь/Газ Вода/газ Масло/газ
Этилен Циклопропан Галотан Дивиниловый эфир Трихлорэтилен Хлороформ Диэтиловый эфир 0,140 0,415 2,35 2,80 9,15 10,3 15,2 0,081 0,204 0,74 1,40 1,55 3,8 15,6 1,28 11,2 224 58 960 265 50,2

(Н. Killian, H. Weese, 1964)

Растворисмость газов в жидкостях зависит от температуры. Зависимость эта различна для различных газов и растворителей, тем не менее, как правило, растворимость понижается при повышении температуры.

Состояние равновесия между кровью и газом при прочих равных условиях устанавливается тем быстрее, чем с большей скоростью растворяется газ.

2. Количество газа, растворенного в жидкости, всегда пропорционально величине парциального давления газа (закон Генри).

В качестве примера можно привести данные, получаемые при воздействии веселящего газа (N2O). Этот газ применяется для наркоза в смеси с кислородом (20% объемных О2 и 80% N20).

При этих условиях и температуре тела складываются следующие характеристики содержания газа в организме:

Концентрация газа Парциальное давление Растворено в 1 л крови Концентрация в крови (Объемные проценты) кРа литров мМоль грамм г/л 80 81 0,374 16,6 0,736 0,736

Таким образом, состояние равновесия в системе: вдыхаемая смесь/ткани, устанавливается при содержании N2O в крови 0,736 г/л. Продолжение ингаляции газа в данной концентрации не приведет к дальнейшему росту его содержания в крови. Время, в течение которого в крови устанавливается такая концентрация токсиканта, может быть существенно уменьшено при увеличении парциального давления газа во вдыхаемом воздухе.

3. В процессе резорбции газов в кровь большую роль играет интенсивность легочного кровотока. Она идентична минутному объему сердечного выброса. Чем выше минутный объем, тем больше крови в единицу времени попадает в альвеолярные капилляры, тем больше газа уносится оттекающей от легких кровью и переносится к тканям, тем быстрее устанавливается равновесие в системе распределения газа между средой и тканями.

4. Стенка капилляра в норме не представляет собой существенного препятствия для диффундирующих газов. Только в патологически измененных легких (отек легких, клеточная инфильтрация альвеолярно-капиллярного барьера) проникновение газов в кровь затруднено. Уменьшение числа капилляров в легких (эмфизема) - другое патологическое состояние, затрудняющее поступление газа в организм.

Переход газов в ткани

Кровь, насыщенная газом в легких, распространяется по организму. Вследствие более высокого содержания в крови, молекулы газа диффундируют в ткани. Кровь, освободившаяся от газа, возвращается к легким. Этот процесс повторяется до тех пор, пока парциальное давление газа в тканях не выровняется с давлением в крови, а давление в крови не станет равным давлению в альвеолярном воздухе (состояние равновесия). В этот момент распределение вещества в организме может быть охарактеризовано значениями коэффициентов распределения (таблица 11).

Таблица 11. Коэффициенты распределения трихлорэтилена в тканях крысы и человека

  Коэффициент распределения

Крыса:

Кровь - воздух 25,8
Легкие - кровь 1,0
Сердце - кровь 1,1
Почки - кровь 1,6
Печень - кровь 1,7
Мозг - кровь 1,3
Тестис - кровь 0,7
Селезенка - кровь 1,2
Мышцы - кровь 0,6
Жир - кровь 25,6

Человек:

Кровь - воздух 9,5
Жир - кровь 68

Диффузия газов в ткани определяется следующими факторами:

1. Растворимостью газов в тканях;

2. Разницей концентраций газа в крови и тканях;

3. Интенсивностью кровоснабжения тканей.

Резорбция аэрозолей

Аэрозоль - это смесь фаз. Смесь газовой фазы и мельчайших частиц жидкости называется туманом. Смесь газовой фазы и мельчайших твердых частиц - дымом. При ингаляции аэрозолей глубина их проникновения в дыхательные пути зависит от размера частиц. Обычно размеры частиц в аэрозоли колеблются от 0,5 до 15 мкм и зависят от концентрации распыленного в воздухе вещества: чем выше концентрация, тем крупнее частицы. С помощью специальных устройств можно создать микродисперсные аэрозоли, размеры частиц в которых не превышают 0,5 мкм. Глубокому проникновению частиц в дыхательные пути препятствует их выседание на слизистые оболочки (седиментация). Крупные частицы накапливаются на слизистой верхних отделов дыхательных путей, частицы среднего диаметра - в более глубоких отделах, и, наконец, мельчайшие частицы могут достичь поверхности альвеол. Седиментации крупных частиц способствуют анатомические особенности органов дыхания. У больших частиц скорость движения в струе воздуха и инерционность больше, чем у мелких, поэтому при каждом изгибе воздухоносных путей они сталкиваются с встречающимися на их пути поверхностями и выседают на них.

Пенетрация в кровь осуществляется в соответствии с физико-химическими законами. Эпителий дыхательного тракта и стенки капиллярного русла обладают проницаемостью пористой мембраны. Жирорастворимые вещества резорбируются быстро, растворимые преимущественно в воде - в зависимости от размеров их молекул. Состояние насыщения проникновения веществ через альвеолярно-капиллярный барьер не наступает. Следует отметить, что через барьер проникают даже крупные белковые молекулы, например инсулина, ботулотоксина и т.д.

Квота резорбции вещества в легких является функцией количества, сорбировавшегося на дыхательной поверхности легких. Количество же сорбировавшегося вещества есть функция количества частиц в единице объема ингалируемого воздуха, размера частиц, глубины и частоты дыхания. У здорового человека задержка аэрозоля в дыхательных путях составляет около 70 - 75%. При постоянной частоте дыхания 7 в минуту, увеличение глубины дыхания на 1000 мл увеличивает задержку аэрозоля до 87%, на 2000 мл - до 93%. Изменение частоты дыхания в меньшей степени сказывается на задержке аэрозоля. Особое значение имеет продолжительность пребывания аэрозоля в дыхательных путях. С увеличением этого времени увеличивается и задержка аэрозоля в легких. Большие частицы более подвержены седиментации и потому лучше задерживаются в легких, однако мелкие частицы, проникают в более глубокие отделы легких, где лучшие условия для всасывания. Аэрозоль с диаметром частиц менее 1 мкм плохо адсорбируется на альвеолярном эпителии и потому в большом количестве выводится с выдыхаемым воздухом.

Резорбция слизистыми глаз

Проникновение токсикантов через слизистую глаз подчиняется общим закономерностям (см. выше). Прежде всего скорость процесса определяется физико-химическими свойствами вещества (растворимостью в липидах и воде, зарядом молекулы, значением рКа, размерами молекулы). Липидный барьер роговицы глаза представляет собой тонкую структуру многослойного плоского эпителия, покрытого снаружи роговым слоем. Через барьер легко проникают жирорастворимые вещества и даже растворимые преимущественно в воде соединения. При попадании токсиканта на роговицу большая его часть смывается слезой и распространяется по поверхности склеры и конъюнктивы глаз. Исследования показывают, что около 50% нанесенного на роговицу вещества удаляется в течение 30 секунд, и более 85% - в течение 3 - 6 мин. При нанесении на роговицу глаза кролика пропранолола содержание вещества в различных структурах глаза снижается в ряду: роговица; радужка; жидкость камер глаза; хрусталик.

Резорбция из тканей

При действии веществ на раневые поверхности или введении в ткань (например, подкожно или внутримышечно) с помощью специальных устройств, возможно их поступление либо непосредственно в кровь, либо сначала в ткани, а уже затем в кровь. При этом в ткань могут проникать высокомолекулярные (белковые), водо-растворимые и даже ионизированные молекулы. Создающийся градиент концентрации токсиканта между местом аппликации, окружающей тканью и кровью является движущей силой процесса резорбции вещества в кровь и внутренние среды организма. Скорость резорбции определяется свойствами тканей и ксенобиотиков.

Свойства тканей

Стенка капилляра

Стенка капилляра представляет собой пористую мембрану. Её толщина в различных тканях колеблется от 0,1 до 1,0 мкм. Для капилляров большинства тканей человека характерны поры диаметром, в среднем, около 2 нм. Площадь поверхности, занимаемая порами, составляет около 0,1% общей площади капиллярного русла. Поры представляют собой промежутки между эндотелиальными клетками. Наличие пор делает мембрану капилляра проницаемой для водо-растворимых веществ. Так, проницаемость клеточных мембран различных тканей для воды составляет 0,3 - 3,0 мкм3/(мин атм мкм2), а стенки капилляра - 370 мкм3. Полагают, что в капиллярах в очень ограниченном количестве встречаются поры и с большим диаметром (до 80 нм). Кроме того, возможен перенос веществ через стенку капилляра с помощью механизма пиноцитоза.

Стенки капилляров мышц млекопитающих имеют поры диаметром 3 - 4 нм, поэтому они не проницаемы для гемоглобина (r = 3,2 нм) и сывороточных альбуминов (r = 3,5 нм), но проницаемы для таких веществ как инулин (r = 1,5 нм) и миоглобин (r = 2 нм). В этой связи проникновение очень многих ксенобиотиков в кровь вполне возможно при их введении в мышцы.










Последнее изменение этой страницы: 2018-04-12; просмотров: 601.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...