![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Определение требуемой точности измерений.
Многократное измерение одной и той же величины постоянного размера позволяют обеспечить требуемую точность. Поскольку ширина доверительного интервала зависит от количества экспериментов, то увеличивая n можно добиться выполнения наперед заданного условия Пример Имеется 10 независимых значений результата измерения линейного размера. Определить длину с вероятностью 0,95. Точность измерения не ниже
Решение 1.Используя вспомогательные вычисления получим: 2.Больше чем на 3 3.Допустим есть основание полагать, что измерения подчиняются нормальному закону. 4.Стандартное отклонение среднего арифметического равно 5.При 6.Так как 7.Пусть 8.Для проверки нормальности закона распределения используем составной критерий: при 9.Стандартное отклонение среднего арифметического 10. При На практике беспредельно повышать точность т.о. нельзя, т.к. рано или поздно определяющим становится не рассеяние расчета, а недостаток информации о поправках. Следовательно точность многократных измерений ограничивается дефицитом информации. Многократное измерение с неравноточными значениями отсчета. При многократном измерении с неравными значениями отсчета, подчиняющегося нормальному закону, функция правдоподобия может быть представлена в виде где все значения отсчета, полученные например, с помощью разных средств измерения, являются независимыми. Для оценки среднего значения результата измерения прологарифмируем эту функцию и, выполнив математические преобразование получим: Это так называемое среднее взвешенное. В числителе отдельные значения результата измерения суммируются с «весами», обратно пропорциям их дисперсиям. Тем самым, более точным значениям придается больший вес. Наличием суммы в знаменателе обеспечивается то, что в выражении Сумма всех весов равна единице: Математическое ожидание среднего взвешенного |
||||||||||||||||||||||||||
Последнее изменение этой страницы: 2018-04-12; просмотров: 332. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |