![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Многократные измерения с равноточными значениями отсчета
Многократное измерение одной и той же величины постоянного размера проводится при повышенных требованиях к точности. Они характерны для проф. метрологической деятельности и в научных исследованиях. Результат многократного измерения: Как и результат однократного измерения он является случайной измеряемой величиной, но его дисперсия в n-раз меньше.
Благодаря этому обстоятельству точность повышается на Порядок выполнения измерений: 1) Получаем n-значений Xi, в которые вносится поправка qi 2) Полученный массив может содержать ошибки. Проверим по правилу 3-х сигм Для того чтобы воспользоваться этим правилом нужно знать числовые характеристики закона распределения Однако, вычислить их невозможно из-за конечного значения n и невозможности интегрирования в бесконечных пределах. Возможно лишь оценить эти числовые характеристики, указав из приближенное значение или предела в котором они находятся с определённой вероятностью. |
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 399. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |