Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Формула повної ймовірності та формула Байеса.




Нехай подія А може відбутися тільки за умови настання однієї із несумісних подій  (i = 1, 2,…, n), які утворюють повну групу. Тоді ймовірність події А подається формулою:

де  — імовірність події  — умовні ймовірності настання події А.

Наведена залежність називається формулою повної ймовірності.

Подія А може відбутись одночасно з деякою із подій  Відомі ймовірності подій  та умовні ймовірності того, що подія А відбудеться. Відомо, що в результаті випробування подія А відбулась. Потрібно з огляду на це переоцінити ймовірності гіпотез  Для цього застосовують формулу Баєса:

Означення повторних незалежних випробувань.

Нехай проводяться n випробувань, у кожному з яких подія А може як відбутись, так і не відбутись. Якщо ця ймовірність у кожному випробуванні не залежить від того, відбулась вона в інших випробуваннях чи ні, то такі випробування називаються незалежними щодо події А. Згідно з означенням випробування також незалежні, якщо в кожному з них імовірність настання події А однакова, тобто дорівнює тому самому числу. Імовірність того, що подія А відбудеться в кожному з незалежних випробувань, позначають  а ймовірність настання протилежної події  

 

Формула Бернуллі для обчислення ймовірності і наймовірнішого числа.

Імовірність того, що в n незалежних випробуваннях, у кожному з яких імовірність Р(А) = р, подія А відбудеться m раз, подається так:

Формула застосовується, якщо

Імовірність того, що в результаті n незалежних експериментів подія А з’явиться від mi до mj раз, обчислюється так:

Локальна та інтегральна теореми Мавра-Лапласа.

Локальна теорема Лапласа. Імовірність того, що в n незалежних випробуваннях, у кожному з яких Р(А) = р, подія А відбудеться m раз, подається такою наближеною залежністю:

Локальна теорема Лапласа дає змогу обчислювати ймовірності , якщо n > 10 i p > 0,1.

Інтегральна теорема Лапласа. Імовірність того, що подія А відбудеться від  до  раз при проведенні n незалежних випробувань, у кожному з яких подія А відбувається з імовірністю р, подається формулою:

 —функція Лапласа;

Значення функції Лапласа наводяться у спеціальних таблицях.

Формула Пуассона малоймовірних випадкових подій.

Точність асимптотичних формул для великих значень n- числа повторних незалежних експериментів за схемою Бернуллі – знижується з наближенням p- до нуля .Тому при n → R,

p- 0 за умови np=a=const імовірність появи випадкової події m раз

(0<=m <=n),обчислюється за такою асимптотичною формулою:

Якщо в кожному з n незалежних повторних випробувань , а n велике, то










Последнее изменение этой страницы: 2018-04-12; просмотров: 472.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...