![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Понятие частотных характеристик
Если подать на вход системы с передаточной функцией W(p)гармонический сигнал то после завершения переходного процесса на выходе установится гармонические колебания с той же частотой Подставим выражения для u(t) и y(t) в уравнение динамики (aоpn + a1pn - 1 + a2pn - 2 + ... + an)y = (bоpm + b1pm-1 + ... + bm)u. Учтем, что а значит pnu = pnUmejwt = Um (jw)nejwt = (jw)nu. Аналогичные соотношения можно записать и для левой части уравнения. Получим: По аналогии с передаточной функцией можно записать:
W(j W(j где P(
Если W(j Ветвь АФЧХ при изменении В ТАУ широко используются логарифмические частотные характеристики (ЛЧХ) (рис.49): логарифмическая амплитудная ЧХ (ЛАЧХ) L( ЛАЧХ получают из первого слагаемого, которое из соображений масштабирования умножается на 20, и используют не натуральный логарифм, а десятичный, то есть L( lg(P2/P1) = lg(A22/A12) = 20lg(A2/A1). По оси абсцисс откладывается частота w в логарифмическом масштабе. То есть единичным промежуткам по оси абсцисс соответствует изменение w в 10 раз. Такой интервал называется декадой. Так как lg(0) = - ЛФЧХ, получаемая из второго слагаемого, отличается от ФЧХ только масштабом по оси ЧХ являются исчерпывающими характеристиками системы. Зная ЧХ системы можно восстановить ее передаточную функцию и определить параметры.
|
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 513. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |