Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Плоские и объемные конечные элементы




Плоские элементы предназначены для моделирования пластин, оболочек и других видов тонкостенных конструкций. Обычно используются трех- и четырехугольные плоские элементы с узлами при вершинах (рисунок 4.2.6, а), а также элементы повышенной точности (т.н. параболические элементы) с промежуточными узлами на их сторонах (показаны точками на рисунке 4.2.6, б).

 

а) б)

Рисунок 4.2.6 – Плоские конечные элементы

 

Чаще всего используются следующие разновидности плоских конечных элементов:

– пластина(plate); этот плоский элемент позволяет при нагружении учесть все внутренние силовые факторы: мембранные, сдвиговые, поперечные и изгибные при относительно небольших затратах вычислительных ресурсов. В NASRTAN’е и ANSYS’е определен как элемент по умолчанию. Главная геометрической характеристикой пластины является толщина. При желании толщина пластины может быть задана разной на разным ее сторонах. В этом случае с точки зрения расчета она имитирует клин или призму. Такой подход бывает необходим при моделирования сложной 3D-геометрии плоскими конечными элементами (пластинами). Позволяет также задавать ребра или накладки из заданного материала, имитируя таким образом сложную геометрию.

Интересной разновидностью пластины является многослойная пластина (laminate). Она подобна обычной пластине, но может содержать до 90 слоев разной толщины, выполненных из разных материалов. Такой элемент удобно использовать при моделировании слоистых композитов.

Для моделирования тонких упругих пластин (в случае, когда толщина пластины многократно меньше радиусов ее изгиба) предназначена еще одна разновидность пластины – мембрана (membrane). В отличие от пластины, этот элемент воспринимает только нормальную нагрузку в своей плоскости, зато требует еще меньше ресурсов для расчета.

Использование линейных или пластинчатых элементов часто позволяет на порядок сократить время расчета, но наиболее универсальными являются  твердотельные или объемные конечные элементы. К объемным конечным элементам относится твердотельный пространственный элемент(solid), который предназначен для построения конечно-элементой сетки в трехмерных тел произвольной формы. Обычно такие элементы имеют вид клина, призмы или параллелепипеда (рисунок 4.2.7, а). Так же, как и для пластин, можно задавать элементы повышенной точности с промежуточными узлами на их сторонах (рисунок 4.2.7, б).

 

а)

б)

Рисунок 4.2.7 – Объемные конечные элементы

 

Интересной разновидностью объемного элемента является осемметричный (axisymmetric) конечный элемент. Такие элементы изображаются как плоские треугольники, но в действительности они моделируют объемное кольцо соответствующей формы (рисунок 4.2.8). Осемметричные элементы предназначены для моделирования напряженно-деформированного состояния в телах вращения (при условии осесимметричных нагрузок и закреплений).

 

Рисунок 4.2.8 – Оссеметричный конечный элемент

 

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 683.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...