Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ВЕРОЯТНОСТИ СОСТОЯНИЙ. ОБЩЕЕ ПРАВИЛО СОСТАВЛЕНИЯ УРАВНЕНИЙ КОЛМОГОРОВА




    Рассмотрим стационарный случайный процесс с дискретным состоянием и непрерывным временем. Все переходы из состояния в состояние происходят под действием каких-то потоков событий. Если все эти потоки простейшие, то процесс, протекающий в системе, можно считать мартовским.

Пусть система S имеет n возможных состояний .

    Задача: составить уравнения, описывающие вероятности состояний поведения данной системы.

    Правило составлений уравнений Колмогорова: В левой части каждого из уравнений стоит производная по времени от вероятности данного состояния. В правой части стоит сумма произведений всех состояний, из которых возможен переход в данное состояние, на интенсивности соответствующих потоков событий минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного состояния.

Например, для графа состояний, приведенного на рис. 1, уравнения Колмогорова имеют вид:


Т.к. в правой части системы каждое слагаемое входит 1 раз со знаком  и 1 раз со знаком , то, складывая все  уравнений, получим, что

,

,

. (1.2.1)

 

Следовательно, одно из уравнений системы можно отбросить и заменить уравнением (1.2.1).

Чтобы получить конкретное решение надо знать начальные условия, т.е. значения вероятностей в начальный момент времени.

 

 




МАРКОВСКИЙ ПРОЦЕСС

Процесс, протекающий в физической системе, называется марковским (или процессом без последействия), если для каждого момента времени вероятность любого состояния системы в будущем зависит только от состояния системы в настоящий момент и не зависит от того, каким образом система пришла в это состояние.

Рассмотрим элементарный пример марковского случайного процесса. По оси абсцисс случайным образом перемещается точка . В момент времени точка находится в начале координат и остается там в течение одной секунды. Через секунду бросается монета; если выпал герб - точка перемещается на одну единицу длины вправо, если цифра - влево. Через секунду снова бросается монета и производится такое же случайное перемещение, и т. д. Процесс изменения положения точки (или, как говорят, «блуждания») представляет собой случайный процесс с дискретным временем и счетным множеством состояний

Схема возможных переходов для этого процесса показана на рис

Покажем, что этот процесс - марковский. Действительно, представим себе, что в какой-то момент времени система находится, например, в состоянии - на одну единицу правее начала координат. Возможные положения точки через единицу времени будут и с вероятностями 1/2 и 1/2; через две единицы - , , с вероятностями 1/4, ½, 1/4 и так далее. Очевидно, все эти вероятности зависят только от того, где находится точка в данный момент , и совершенно не зависят от того, как она пришла туда.










Последнее изменение этой страницы: 2018-04-12; просмотров: 263.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...