![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Главные напряжения при изгибе
Наибольшее главное напряжение σ1 находится на верхних крайних волокнах и равно нулю на нижних крайних волокнах. Главное напряжение σ3 имеет наибольшее по абсолютной величине значение на нижних волокнах. Траектория главных напряжений зависит от типа нагрузки и способа закрепления балки. Анализ напряженного состояния прямоугольного сечения Анализ напряженного состояния при изгибе для балки двутаврового сечения При решении задач достаточно отдельно проверить нормальные и отдельно касательные напряжения. Однако иногда наиболее напряженными оказываются промежуточные волокна, в которых имеются и нормальные, и касательные напряжения. Это происходит в сечениях, где одновременно и изгибающий момент, и поперечная сила достигают больших значений — это может быть в заделке консольной балки, на опоре балки с консолью, в сечениях под сосредоточенной силой или в сечениях с резко меняющейся шириной. К примеру, в двутавровом сечении наиболее опасны места примыкания стенки к полке — там имеются значительные и нормальные, и касательные напряжения. Сдвиг. Кручение прямого стержня Чистый сдвиг. Закон Гука при сдвиге. Модуль сдвига. Условие прочности при кручении с учетом принятых обозначений формулируется следующим образом: максимальные касательные напряжения, возникающие в опасном сечении вала, не должны превышать допускаемых напряжений и записывается в виде где - из второй теории прочности - из теории Мора Из теорий прочности для пластичных материалов при чистом сдвиге получим: - по третьей теории прочности - по четвертой теории прочности Как следует из закона парности касательных напряжений, одновременно с касательными напряжениями, действующими в плоскости поперечного сечения вала, имеют место касательные напряжения в продольных плоскостях. Они равны по величине парным напряжениям, но имеют противоположный знак. Таким образом, все элементы бруса при кручении находятся в состоянии чистого сдвига. Так как чистый сдвиг является частным случаем плоского напряженного состояния, при котором В пределах упругости касательное напряжение прямо пропорционально относительному сдвигу – это закон Гука при сдвиге; G – модуль сдвига, Н/м2, характеризующий жесткость материала при сдвиге. Закон Гука при сдвиге через абсолютные деформации: где а – расстояние между сдвигаемыми гранями; А – площадь грани. Модуль сдвига G, модуль продольной упругости Е и коэффициент Пуассона Удельная потенциальная энергия деформации сдвига равна На практике чаще всего теория сдвига применяется к расчету болтов, заклепок, шпонок, сварных швов и других элементов соединений. |
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 520. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |