Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод координат на плоскости. Основные задачи на метод координат




Основная идея метода координат на плоскости состоит в том, что геометрические свойства линии L выясняются путем изучения аналитическими и алгебраическими средствами свойств уравнения F(x, y) = 0 этой линии. Например, геометрический вопрос о числе точек пересечения прямой и окружности сводится к аналитическому вопросу о числе решений алгебраической системы уравнений прямой и окружности.

В аналитической геометрии на плоскости систематически исследуются так называемые алгебраические линии 1 - го и 2 - го порядков; эти линии в декартовых прямоугольных координатах определяются соответственно алгебраическими уравнениями 1 - й и 2 - й степеней. Линии 1 - го порядка суть прямые и обратно, каждая прямая определяется алгебраическим уравнением 1 - й степени Ax + By + C = 0. Линии 2 - го порядка определяются уравнениями вида Ax² + Bxy + Cy² + Dx + Ey + F = 0. Основной метод исследования и классификации этих линий заключается в подборе такой декартовой прямоугольной системы координат, в которой уравнение линии имеет наиболее простой вид, и последующем исследовании этого простого уравнения.

В аналитической геометрии в пространстве декартовы прямоугольные координаты x, y, z (абсцисса, ордината и аппликата) точки М вводятся в полной аналогии с плоским случаем. Каждой поверхности S в пространстве можно сопоставить ее уравнение F(x, y, z) = 0относительно системы координат Oxyz. При этом геометрические свойства поверхности S выясняются путем изучения аналитическими и алгебраическими средствами свойств уравнения этой поверхности. Линию L в пространстве задают как линию пересечения двух поверхностей S1 и S2. Если F1(x, y, z) = 0 и F2(x, y, z) = 0 - уравнения S1 и S2, то пара этих уравнений, рассматриваемая совместно, представляет собой уравнение линии L. Например, прямую в пространстве можно рассматривать как линию пересечения двух плоскостей. В аналитической геометрии в пространстве систематически исследуются так называемые алгебраические поверхности 1 - го и 2 - г порядков. Выясняется, что алгебраическими поверхностями 1 - го порядка являются лишь плоскости. Поверхности 2 - го порядка определяются уравнениями вида: Ax² + By² + Cz² + Dxy + Eyz + Fzx + Gx + Hy + Mz + N = 0.

Основной метод исследования и классификации этих поверхностей заключается в подборе такой декартовой прямоугольной системы координат, в которой уравнение поверхности имеет наиболее простой вид, и последующем исследовании этого простого уравнения.

 

Основные задачи на метод координат

Применяя метод координат, можно решать задачи двух видов.

1. Пользуясь координатами можно истолковать уравнения и неравенства геометрически и таким образом применять геометрию к алгебре и анализу. Графическое изображение функции первый пример такого применения метода координат.

2. Задавая фигуры уравнениями и выражая в координатах геометрические соотношения, мы применяем алгебру к геометрии. Например, можно выразить через координаты основную геометрическую величину - расстояние между точками.

 

Наиболее распространенными среди планиметрических задач, решаемых координатным методом, являются задачи следующих 2 видов: 1) на обоснование зависимостей между элементами фигур, особенно между длинами этих элементов; 2) на нахождение множества точек, удовлетворяющих определенным свойствам.

 

Полярная система координат (параллельный перенос, поворот).

Полярная система координат определяется заданием некоторой точки O, называемой полюсом, исходящего из этой точки луча OA (обозначается также и как Ox), называемого полярной осью, и масштаба для изменения длин. Кроме того, при задании полярной системы координат должно быть определено, какие повороты вокруг точки O считаются положительными (на чертежах обычно положительными считаются повороты против часовой стрелки).

Итак, выберем на плоскости (рисунок выше) некоторую точку O (полюс) и некоторый выходящий из неё луч Ox. Кроме того, укажем единицу масштаба. Полярными координатами точки M называются два числа ρ и φ, первое из которых (полярный радиус ρ) равно расстоянию точки M от полюса O, а второе (полярный угол φ, который называют также амплитудой) - угол, на который нужно повернуть против часовой стрелки луч Ox до совмещения с лучом OM.

Точку M с полярными координатами ρ и φ обозначают символом M(ρ, φ).










Последнее изменение этой страницы: 2018-05-29; просмотров: 325.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...