Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение систем линейных уравнений. Метод обратной матрицы




 

Перейдем к изучению СЛАУ (4.1), которой соответствует матричное уравнение (4.2). Сначала рассмотрим частный случай, когда число неизвестных равно числу уравнений данной системы ( ) и , то есть основная матрица системы невырождена. В этом случае, согласно предыдущему пункту, для матрицы существует единственная обратная матрица . Ясно, что она согласована с матрицами и . Покажем это. Для этого умножим слева обе части матричного уравнения (4.2) на матрицу :

Следовательно, с учетом свойств умножения матриц получаем

Так как , а , тогда

. (4.3)

 

Убедимся, что найденное значение является решением исходной системы. Подставив (4.3) в уравнение (4.2), получим , откуда имеем .

Покажем, что это решение единственное. Пусть матричное уравнение (4.2) имеет другое решение , которое удовлетворяет равенству

.

 

Покажем, что матрица равна матрице

С этой целью умножим предыдущее равенство слева на матрицу .

В результате получим

 

Такое решение системы уравнений с неизвестными называется решением системы (4.1) методом обратной матрицы.

Пример. Найти решение системы

.

Выпишем матрицу системы:

,

 

Для этой матрицы ранее (занятие 1) мы уже нашли обратную:

 

или

 

Здесь мы вынесли общий множитель , так как нам в дальнейшем нужно будет произведение .

 

Ищем решение по формуле: .

 

Найденные значения переменных подставляем в уравнения системы и убеждаемся, что они являются ее решением.

 

Комплексные числа. Алгебраическая, тригонометрическая и показательная форма комплексных чисел

Комплексное число — это выражение вида a + bi, где a, b — действительные числа, а i — так называемая мнимая единица, символ, квадрат которого равен –1, то есть i2 = –1. Число aназывается действительной частью, а число bмнимой частьюкомплексного числа z = a + bi. Если b = 0, то вместо a + 0i пишут просто a. Видно, что действительные числа — это частный случай комплексных чисел.

Арифметические действия над комплексными числами те же, что и над действительными: их можно складывать, вычитать, умножать и делить друг на друга. Сложение и вычитание происходят по правилу (a + bi) ± (c + di) = (a ± c) + (b ± d)i, а умножение — по правилу (a + bi) · (c + di) = (acbd) + (ad + bc)i (здесь как раз используется, что i2 = –1). Число = abi называется комплексно-сопряженнымк z = a + bi. Равенство z · = a2 + b2 позволяет понять, как делить одно комплексное число на другое (ненулевое) комплексное число:

.

(Например, .)

Алгебраическая форма комплексного числа

 

Запись комплексного числа z в виде , где a и b - действительные числа, называется алгебраической формой комплексного числа.

 

Например .

 

Тригонометрическая форма комплексного числа

 

Если  - модуль комплексного числа , а  - его аргумент, то тригонометрической формой комплексного числа z называется выражение

 

Показательная форма комплексного числа

 

Показательной формой комплексного числа  называется выражение

 

 










Последнее изменение этой страницы: 2018-05-29; просмотров: 247.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...