Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Соединение нагрузки треугольником.




Выберем направление токов в фазах треугольника в соответствии с рис. 6.9, а. Ток вызывается напряжением . Модуль и фаза его относительно напряжения определяются сопротивлением нагрузки . Ток вызван напряжением Модуль и фаза его относительно определяются сопротивлением . Ток вызван напряжением и зависит от сопротивления . Линейные токи вычислим через фазовые токи по первому закону Кирхгофа:

При равномерной нагрузке фаз линейные токи по модулю в раз больше фазовых токов нагрузки. При неравномерной нагрузке линейные токи могут быть и больше и меньше фазовых токов нагрузки.

Рис. 6.14

Пример 62. В схеме рис. 6.14, a . ЭДС каждой фазы генератора 220 В. Определить все токи и построить векторную диаграмму.

Решение. Векторная диаграмма построена на рис. 6.14, б. Напряжения на фазах нагрузки в раз больше фазовых ЭДС генератора и равны .Ток опережает напряжение на 90° и равен . Ток отстает от на 90° и также равен 20 А. Ток по модулю равен 20 А и совпадает по фазе с напряжением Линейные токи найдем графическим путем, используя соотношения (6.4). По модулю,

 

Билет №8

1.Электрическая энергия.

Электрическая энергия - это энергия электромагнитного поля, являющегося особым видом материи. Особым в том смысле, что существует в пустоте. В тоже время обладает энергией:

,

массой:

кг/м2

и количеством движения:

.

Электрическая энергия - это спрособность тела производить работу.

Это поле имеет две составляющие - электрическую и магнитную. Это можно показать на примере линии передачи постоянного тока.

Провода линии изолированы друг от друга и находятся под напряжением U. Следовательно, между проводами возникает электрическое поле. На рисунке силовые линии изображены пунктиром. По проводам протекает электрический ток I. Следовательно, в проводах и вне их создается магнитное поле (сплошные линии на рисунке).

На рисунке видно характерное различие между электрическим и магнитным полями. Силовые линии электрического поля не замкнуты они начинаются и оканчиваются на заряженных проводах. Магнитные силовые линии всегда замкнуты они не имеют ни начала, ни конца.

Связь электрических и магнитных явлений была установлена в двадцатых годах прошлого века, когда Ампер и Эрстед доказали, что электрический ток сопровождается возникновением магнитного поля. Окончательная связь электрического поля и магнитного поля была подтверждена Фарадеем, открывшим явление электромагнитной индукции E=-dФ/dt (1831г.)

До создания Доливо – Добровольским м.о. системы трехфазного тока электротехника развивалась как техника постоянного тока.

Теория электромагнитного поля в законченной математической форме была создана Максвеллом в 1873 году.

Введенное Максвеллом представление об электромагнитных волнах подтверждённых, экспериментами Герца об электромагнитных волнах, позволило создать отрасль - радиотехнику.

Генерирование, передача преобразование и потребление электрической энергий возможно лишь при наличии электромагнитного поля.

 

2.Анализ цепей синусоидального тока с помощью векторных диаграмм.

Совокупность векторов, изображающих синусоидальные ЭДС, напряжения и токи одной частоты и построенных на плоскости с соблюдением их ориентации друг относительно друга, называют векторной диаграммой. Векторные диаграммы широко применяются при анализе режимов работы цепей синусоидального тока, что делает расчет цепи наглядным.

Цепь, содержащая резистор и индуктивную катушку

Реальная катушка в цепи переменного тока представляет сочетание активной и индуктивной составляющих сопротивления. Схема замещения индуктивной катушки представлена на рис 2.9 а. Пусть по катушке протекает ток .

а) б) в)

Рис. 2.9

В соответствии со вторым законом Кирхгофа для мгновенных значений

, (2.18)

где – напряжение на активном сопротивлении; – напряжение на индуктивном сопротивлении.

Для действующих значений уравнение (2.18) можно записать

. (2.19)

Построим векторную диаграмму в соответствии с (2.19) в такой последовательности. Изобразим вектор тока (основной вектор) на координатной плоскости (рис. 2.9 б). Затем строим вектор напряжения на активной составляющей сопротивления . Он совпадает по фазе с током. Вектор напряжения опережает вектор тока на 90°. Сумма двух векторов дает вектор напряжения источника, который опережает вектор тока на угол . Из векторной диаграммы следует

отсюда

, . (2.20)

где z – полное сопротивление цепи R, L.

Треугольник ОАВ (рис. 2.9 б) назовем треугольником напряжений. Составляющая напряжения, находящаяся в фазе с током, называется активной составляющей напряжения

. (2.21)

Составляющая напряжения, перпендикулярная вектору тока, называется реактивной составляющей напряжения

. (2.22)

Если стороны треугольника напряжений (рис. 2.9 б) разделить на действующее значение тока, то получим треугольник сопротивлений (рис. 2.9 в). Из треугольника сопротивлений получают соотношения для угла сдвига фаз, а также связь между параметрами цепи

; (2.23)

Цепь имеет индуктивный характер, если 0< < . Крайние значения
= 0 и = соответствуют чисто активной и чисто индуктивному характеру нагрузки.

2.3.2. Цепь, содержащая резистор и конденсатор

Напряжение на входе цепи (рис. 2.10 а) согласно второму закону Кирхгофа для действующих значений определяется по уравнению

. (2.24)

Рис. 2.10

Построим векторную диаграмму, полагая, что в цепи протекает ток и < 0. Вектор тока откладываем под углом к оси в отрицательном направлении – по часовой стрелке (рис. 2.10 б). Вектор напряжения на резисторе совпадает по фазе с вектором тока, а вектор напряжения на конденсаторе отстает от вектора тока на 90°. При сложении двух векторов согласно уравнению (2.24) получим вектор напряжения источника (рис. 2.10 б). Из векторной диаграммы

, (2.25)

где – полное сопротивление цепи .

Вектор напряжения источника отстает от вектора тока на угол , поэтому говорят, что цепь носит емкостный характер (– 90°< <0).

Для треугольника напряжений (рис. 2.10 б) и треугольника сопротивлений (рис. 2.10 в) можно записать соотношения, аналогичные (2.20), (2.21) и (2.23).

Последовательное соединение резистора, катушки и конденсатора

При протекании синусоидального тока по цепи, состоящей из последовательно соединенных элементов (рис. 2.11 а), на ее зажимах создается синусоидальное напряжение, равное алгебраической сумме синусоидальных напряжений на отдельных элементах (второй закон Кирхгофа):

.

Для действующих значений это уравнение имеет вид

.

Построим векторную диаграмму с учетом известных фазовых соотношений (рис. 2.11 б). Вектор напряжения на резисторе совпадает по фазе с вектором тока, на конденсаторе он отстает от вектора тока на 90°, а на катушке опережает вектор тока на 90°. Сумма этих векторов напряжения на элементах цепи, даст вектор напряжения источника.

а) б) в)

Рис. 2.11

Из векторной диаграммы определяем входное напряжение

откуда ток и полное сопротивление

, (2.26)

где – разность индуктивного и емкостного сопротивлений, называемая реактивным сопротивлением.

Сдвиг фаз определим из треугольника напряжений или сопротивлений:

.

Если , т.е. > 0, то цепь имеет индуктивный характер. В этом случае (рис. 2.11 б), а сдвиг фаз > 0. Если , т.е. < 0, то цепь имеет емкостный характер и сдвиг фаз < 0 (рис. 2.11 в). Таким образом, реактивное сопротивление может быть положительным ( > 0) и отрицательным ( < 0).

Особый случай цепи, когда , т.е. реактивное сопротивление . В этом случае цепь имеет чисто активный характер, а сдвиг фаз = 0. Такой режим называется резонансом напряжений.

Условием резонанса напряжений является

.

Эти условия показывает, что резонанс напряжений в цепи можно получить изменением частоты напряжения источника, или индуктивности катушки или емкости конденсатора.

Угловая частота, при которой в цепи наступает резонанс напряжений, называется резонансной угловой частотой

Полное сопротивление цепи минимальное и равно активному

Ток в цепи, очевидно, будет максимальным

Напряжение на резисторе равно напряжению источника: .

Резонанс напряжений, как правило, нежелателен в электроэнергетике, но широко применяется в радиотехнических устройствах, автоматике, телемеханике, связи, измерительной технике и др..

Неразветвленная цепь синусоидального тока

Рассмотрим цепь из трех последовательных токоприемников (рис. 2.12 а): первые два имеют активно-индуктивный характер, третий является последовательным соединением резистора и конденсатора. Проведем анализ цепи по векторной диаграмме. Произвольно строим вектор тока, который является базовым для всех векторов диаграммы. В соответствии со вторым законом Кирхгофа

,

где ; ; .

Рис. 2.12

Строим составляющие векторы, модули которых определяются по закону Ома. Суммарный вектор строим по правилу многоугольника. Векторы напряжений на активных сопротивлениях цепи совпадают по фазе с вектором тока, векторы опережают вектор тока на 90°, а вектор отстает от него на угол 90° (рис. 2.12 б). Действующее значение напряжения источника (модуль вектора ) по диаграмме находится из треугольника напряжений ОАВ

. (2.27)

В формуле (2.27) – активное сопротивление цепи, равное арифметической сумме сопротивлений последовательно включенных резисторов. В общем случае для последовательных приемников

.

является реактивным сопротивлением цепи, равным алгебраической сумме реактивных сопротивлений последовательно включенных элементов. В общем случае

.

В приведенной схеме сумма векторов индуктивных напряжений меньше вектора напряжения на конденсаторе, поэтому < 0. В таком случае говорят, что реактивное сопротивление (или цепь в целом) носит емкостный характер.

 

3. Мощности несимметричной трёхфазной системы.

Несимметричной система будет называться в случае если действующие значения токов и напряжений не будут равны или угол сдвига фаз будет не равен 2π/3 или 1200.

Билет №9

1.Электрическая мощность.

Электрическая мощность

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Единицей измерения в Международной системе единиц (СИ) является ватт...    

2.Мощность цепи синусоидального тока.

В цепи переменного тока различают три вида мощности.

1. Активная мощность Р, обусловленная наличием в цепи активного сопротивления R.

2. Реактивная мощность Q, обусловленная наличием реактивных элементов (катушек и конденсаторов

3. Кроме активной и реактивной мощностей, цепь синусоидального тока характеризируется полной мощностью S. Единица измерения ВА (ВОЛЬТ – АМПЕР).

3.Законы коммутации.

Переходным процессом называется процесс перехода от одного режима работы ЭЦ к другому, возникающий в результате коммутации в цепи.

Коммутацией называется процесс замыкания или размыкания рубильников, выключателей, в результате которого происходит изменение параметров цепи, её конфигурации, подключение или отключение источников. Будем считать, что коммутация производится мгновенно в момент t = 0.

Изучение переходных процессов даёт возможность установить, как деформируются по форме и амплитуде сигналы при прохождении их через усилители, фильтры и другие устройства, позволяет выявить возможные превышения напряжения и токов на отдельных участках цепи, которые могут в десятки раз превышать их установившиеся значения.

Первый закон.В начальный момент времени после коммутации ток в индуктивности остаётся таким же, каким он был непосредственно перед коммутацией, а затем плавно изменяется.

(6.1)

Невозможность скачкообразного изменения тока следует из того, что в противном случае на индуктивности появилось бы бесконечно большое напряжение , что лишено физического смысла.

Второй закон. В начальный момент времени после коммутации напряжение на ёмкости остаётся таким же, каким было до коммутации, а затем плавно изменяется.

(6.2)

Невозможность скачкообразного изменения напряжения на ёмкости следует из того, что в противном случае через ёмкость проходил бы бесконечно большой ток , что также лишено физического смысла.

                                                                     Билет №10

 

1

   

§ 2.11. Энергетический баланс в электрических цепях. При протекании токов по сопротивлениям в последних выделяется теплота. На основании закона сохранения энергии количество теплоты, вы-деляющееся в единицу времени в сопротивлениях схемы, должно равняться энергии, доставляемой за то же время источником питания. Если направление тока I, протекающего через источник ЭДС E, совпадает с направлением ЭДС, то источник ЭДС доставляет в цепь энергию в единицу времени (мощность), равную EI, и произведение EI входит в уравнение энергетического баланса с положительным знаком.
Если же направление тока I встречно направлению ЭДС Е, то источник ЭДС не поставляет энергию, а потребляет ее (например, заряжается аккумулятор), и произведение EIвойдет в уравнение энергетического баланса с отрицательным знаком.
Уравнение энергетического баланса при питании только от источников ЭДС имеет вид

Когда схема питается не только от источников ЭДС, но и от источников тока, т. е. к отдельным узлам схемы подтекают и от них утекают токи источников тока, при составлении уравнения энерге-тического баланса необходимо учесть и энергию, доставляемую источниками тока. Допустим, что к узлу а схемы подтекает ток I от источника тока, а от узла b этот ток утекает. Доставляемая источником тока мощность равна UabJ. Напряжение Uab и токи в ветвях схемы должны быть подсчитаны с учетом тока, подтекающего от источника тока. Последнее проще всего сделать по методу узловых потенциалов (см. § 2.22). Общий вид уравнения энергетического баланса:


Для практических расчетов электрических цепей разработаны методы, более экономичные в смысле затраты времени и труда, чем метод расчета цепей по законам Кирхгофа. Рассмотрим эти методы.

.Энергетический баланс в электрических цепях.

 

2.Векторное изображение синусоидальных величин на комплексной плоскости.










Последнее изменение этой страницы: 2018-05-10; просмотров: 234.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...