Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тема 6. Интеллектуальный анализ данных




1. Интеллектуальный анализ данных

2. Стадии ИАД

3. Методы АИД

4. Типы закономерностей

5. Типовые задачи для методов ИАД

6. Области применения Data mining

7. Классы систем Data Mining

8. Интеграция OLAP и ИАД

 

1. Интеллектуальный анализ данных

Мы живем в веке информации. Трудно переоценить значение данных, которые мы непрерывно собираем в процессе нашей деятельности, в управлении бизнесом или производством, в банковском деле, в решении научных, инженерных и медицинских задач.

Мощные компьютерные системы, хранящие и управляющие огромными базами данных, стали неотъемлемым атрибутом жизнедеятельности, как крупных корпораций, так и даже небольших компаний.

Тем не менее, наличие данных само по себе еще недостаточно для улучшения показателей работы. Нужно уметь трансформировать "сырые" данные в полезную для принятия важных бизнес решений информацию.

В этом и состоит основное предназначение технологий Data mining.

Data Mining переводится как "добыча" или "раскопка данных". Нередко рядом с Data Mining встречаются слова "обнаружение знаний в базах данных" (knowledge discovery in databases) и "интеллектуальный анализ данных". Их можно считать синонимами Data Mining. Возникновение всех указанных терминов связано с новым витком в развитии средств и методов обработки данных.

В связи с совершенствованием технологий записи и хранения данных на людей обрушились колоссальные потоки информационной руды в самых различных областях. Деятельность любого предприятия (коммерческого, производственного, медицинского, научного и т.д.) теперь сопровождается регистрацией и записью всех подробностей его деятельности. Что делать с этой информацией? Стало ясно, что без продуктивной переработки потоки сырых данных образуют никому не нужную свалку.

Специфика современных требований к такой переработке следующая:

· Данные имеют неограниченный объем;

· Данные являются разнородными (количественными, качественными, текстовыми);

· Результаты должны быть конкретны и понятны;

· Инструменты для обработки сырых данных должны быть просты в использовании.

 

Традиционная математическая статистика, долгое время претендовавшая на роль основного инструмента анализа данных, откровенно спасовала перед лицом возникших проблем. Методы математической статистики оказались полезными главным образом для проверки заранее сформулированных гипотез (verification-driven data mining) и для “грубого” разведочного анализа, составляющего основу оперативной аналитической обработки данных (on-line analytical processing, OLAP).

В основу современной технологии Data Mining (discovery-driven data mining) положена концепция шаблонов (паттернов), отражающих фрагменты многоаспектных взаимоотношений в данных. Эти шаблоны представляют собой закономерности, свойственные подвыборкам данных, которые могут быть компактно выражены в понятной человеку форме. Поиск шаблонов производится методами, не ограниченными рамками априорных предположений о структуре выборки и виде распределений значений анализируемых показателей.

Примерами заданий на такой поиск при использовании Data Mining могут служить следующие вопросы:

1. Встречаются ли точные шаблоны в описаниях людей, подверженных повышенному травматизму?

2. Имеются ли характерные портреты клиентов, которые, по всей вероятности, собираются отказаться от услуг телефонной компании?

3. Существуют ли стереотипные схемы покупок для случаев мошенничества с кредитными карточками?

 

Важное положение Data Mining — нетривиальность разыскиваемых шаблонов. Это означает, что найденные шаблоны должны отражать неочевидные, неожиданные регулярности в данных, составляющие так называемые скрытые знания (hidden knowledge). К обществу пришло понимание, что сырые данные содержат глубинный пласт знаний, при грамотной раскопке которого могут быть обнаружены настоящие самородки.На рисунке 1 показаны уровни знаний и инструменты для их извлечения.

Рисунок 1. Уровни знаний, извлекаемых из данных.

 

Data Mining — это процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности.

 

2. Стадии ИАД

В общем случае процесс интеллектуального анализа данных (ИАД) состоит из трёх стадий (рис. 2):

1) выявление закономерностей (свободный поиск);

2) использование выявленных закономерностей для предсказания неизвестных значений (прогностическое моделирование);

3) анализ исключений, предназначенный для выявления и толкования аномалий в найденных закономерностях.

Рисунок 2. Стадии процесса интеллектуального анализа данных

 

1. Свободный поиск (Discovery)

Свободный поиск определяется как процесс исследования исходной БД на предмет поиска скрытых закономерностей без предварительного определения гипотез относительно вида этих закономерностей. Другими словами, сама программа берет на себя инициативу в деле поиска интересных аномалий, или шаблонов, в данных, освобождая аналитика от необходимости обдумывания и задания соответствующих запросов. Этот подход особенно ценен при исследовании больших баз данных, имеющих значительное количество скрытых закономерностей, большинство из которых было бы упущено при непосредственном поиске путем прямых запросов пользователя к исходным данным.

В качестве примера свободного поиска по инициативе системы рассмотрим исследование реестра физических лиц. Если инициатива принадлежит пользователю, он может построить запрос типа "Каков средний возраст директоров предприятий отрасли промышленности строительных материалов, расположенных в Иванове и находящихся в собственности субъекта Федерации?" и получить ответ - 48. В системе, обеспечивающей стадию свободного поиска, пользователь может поступить иначе и запросить у системы найти что-нибудь интересное относительно того, что влияет на атрибут Возраст. Система начнет действовать так же, как и аналитик-человек, т. е. искать аномалии в распределении значений атрибутов, в результате чего будет произведен список логических правил типа "ЕСЛИ ..., ТО ...", в том числе, например:

· ЕСЛИ Профессия="Программист", ТО Возраст<=30 в 61% случаев;

· ЕСЛИ Профессия="Программист", ТО Возраст<=60 в 98% случаев.

Аналогично, при исследовании реестра юридических лиц аналитика может заинтересовать атрибут Форма_собственности. В результате свободного поиска могут быть получены правила:

· ЕСЛИ Основной_вид_деятельности="Общеобразовательные детские школы",
ТО Форма_собственности="Муниципальная собственность" в 84% случаев;

· ЕСЛИ Вид_деятельности="Наука и научное обслуживание",
ТО Форма_собственности="Частная собственность" в 73% случаев.

Стадия свободного поиска может выполняться посредством:

· индукции правил условной логики (как в приведенных примерах) - с их помощью, в частности, могут быть компактно описаны группы похожих обучающих примеров в задачах классификации и кластеризации;

· индукции правил ассоциативной логики - то есть того, что было определено в рамках классификации задач ИАД по типам извлекаемой информации как выявление ассоциаций и последовательностей;

· определения трендов и колебаний в динамических процессах, то есть исходного этапа задачи прогнозирования.

 

Стадия свободного поиска, как правило, должна включать в себя не только генерацию закономерностей, но и проверку их достоверности на множестве данных, не принимавшихся в расчет при их формулировании.

2. Прогностическое моделирование (Predictive Modeling)

Здесь, на второй стадии ИАД, используются плоды работы первой, то есть найденные в БД закономерности применяются для предсказания неизвестных значений:

· при классификации нового объекта мы можем с известной уверенностью отнести его к определенной группе результатов рассмотрения известных значений его атрибутов;

· при прогнозировании динамического процесса результаты определения тренда и периодических колебаний могут быть использованы для вынесения предположений о вероятном развитии некоторого динамического процесса в будущем.

Возвращаясь к рассмотренным примерам, продолжим их на данную стадию. Зная, что некто Иванов - программист, можно быть на 61% уверенным, что его возраст <=30 годам, и на 98% - что он <=60 годам. Аналогично, можно сделать заключение о 84% вероятности того, что некоторое новое юридическое лицо будет находиться в муниципальной собственности, если его основной вид деятельности - "Общеобразовательные детские школы".

Следует отметить, что свободный поиск раскрывает общие закономерности, т. е. индуктивен, тогда как любой прогноз выполняет догадки о значениях конкретных неизвестных величин, следовательно, дедуктивен. Кроме того, результирующие конструкции могут быть как прозрачными, т. е. допускающими разумное толкование (как в примере с произведенными логическими правилами), так и нетрактуемыми - "черными ящиками" (например, про построенную и обученную нейронную сеть никто точно не знает, как именно она работает).

3. Анализ исключений (Forensic Analysis)

Предметом данного анализа являются аномалии в раскрытых закономерностях, то есть необъясненные исключения. Чтобы найти их, следует сначала определить норму (стадия свободного поиска), вслед за чем выделить ее нарушения. Так, определив, что 84% общеобразовательных школ отнесены к муниципальной форме собственности, можно задаться вопросом - что же входит в 16%, составляющих исключение из этого правила? Возможно, им найдется логическое объяснение, которое также может быть оформлено в виде закономерности. Но может также статься, что мы имеем дело с ошибками в исходных данных, и тогда анализ исключений может использоваться в качестве инструмента очистки сведений в хранилище данных.

3. Методы ИАД

Все методы ИАД подразделяются на две большие группы по принципу работы с исходными обучающими данными.

В первом случае исходные данные могут храниться в явном детализированном виде и непосредственно использоваться для прогностического моделирования и/или анализа исключений; это так называемые методы рассуждений на основе анализа прецедентов. Главной проблемой этой группы методов является затрудненность их использования на больших объемах данных, хотя именно при анализе больших хранилищ данных методы ИАД приносят наибольшую пользу.

Во втором случае информация вначале извлекается из первичных данных и преобразуется в некоторые формальные конструкции (их вид зависит от конкретного метода). Согласно предыдущей классификации, этот этап выполняется на стадии свободного поиска, которая у методов первой группы в принципе отсутствует. Таким образом, для прогностического моделирования и анализа исключений используются результаты этой стадии, которые гораздо более компактны, чем сами массивы исходных данных. При этом полученные конструкции могут быть либо "прозрачными" (интерпретируемыми), либо "черными ящиками" (нетрактуемыми).

Две эти группы и примеры входящих в них методов представлены на рисунке 3.

Рисунок 3. Классификация технологических методов ИАД

 

1. Непосредственное использование обучающих данных

Обобщенный алгоритм Lazy-Learning, относящийся к рассматриваемой группе, выглядит так: на вход классификатора подается пример, на выходе ожидается предсказание включающего его класса. Каждый пример представляется точкой в многомерном пространстве свойств (атрибутов), принадлежащей некоторому классу. Каждый атрибут принимает непрерывные значения либо дискретные значения из фиксированного набора. Для примера возвращается его наиболее вероятный класс.

Индивидуальной особенностью алгоритма k-ближайшего соседа является метод определения в нем апостериорной вероятности принадлежности примера классу.

Функция близости, определяемая как множество k ближайших соседей примера во множестве известных обучающих примеров, близость которых к классифицируемому примеру определяется функцией расстояния.

Метод ближайшего соседа является частным случаем метода k-ближайшего соседа при k=1.

Более сложные алгоритмы типа Lazy-Learning основываются на том же обобщенном алгоритме, но или иначе определяют апостериорные вероятности принадлежности примеров классам, или (как, например, Nested Generalized Exemplars Algoritm(NGE)) усложняют расчет функции.

Особенность этой группы методов состоит в том, что предсказание неизвестных значений выполняется на основе явного сравнения нового объекта (примера) с известными примерами. В случае большого количества обучающих примеров, чтобы не сканировать последовательно все обучающее множество для классификации каждого нового примера, иногда используется прием выборки относительно небольшого подмножества "типичных представителей" обучающих примеров, на основе сравнения с которыми и выполняется классификация. Однако, этим приемом следует пользоваться с известной осторожностью, так как в выделенном подмножестве могут не быть отражены некоторые существенные закономерности.

Что касается самого известного представителя этой группы - метода k-ближайшего соседа, - он более приспособлен к тем предметным областям, где атрибуты объектов имеют преимущественно численный формат, так как определение расстояния между примерами в этом случае является более естественным, чем для дискретных атрибутов.

2. Выявление и использование формализованных закономерностей

Методы этой группы извлекают общие зависимости из множества данных и позволяют затем применять их на практике. Они отличаются друг от друга:

· по типам извлекаемой информации (которые определяются решаемой задачей);

· по способу представления найденных закономерностей.

 

Формализм, выбранный для выражения закономерностей, позволяет выделить три различных подхода, каждый из которых уходит своими корнями в соответствующие разделы математики:

· методы кросс-табуляции;

· методы логической индукции;

· методы вывода уравнений.

 

Логические методы наиболее универсальны в том смысле, что могут работать как с численными, так и с другими типами атрибутов. Построение уравнений требует приведения всех атрибутов к численному виду, тогда как кросс-табуляция, напротив, требует преобразования каждого численного атрибута в дискретное множество интервалов.

Методы кросс-табуляции

Кросс-табуляция является простой формой анализа, широко используемой в генерации отчетов средствами систем оперативной аналитической обработки (OLAP). Двумерная кросс-таблица представляет собой матрицу значений, каждая ячейка которой лежит на пересечении значений атрибутов. Расширение идеи кросс-табличного представления на случай гиперкубической информационной модели является, как уже говорилось, основой многомерного анализа данных, поэтому эта группа методов может рассматриваться как симбиоз многомерного оперативного анализа и интеллектуального анализа данных.

Кросс-табличная визуализация является наиболее простым воплощением идеи поиска информации в данных методом кросс-табуляции. Строго говоря, этот метод не совсем подходит под отмеченное свойство ИАД - переход инициативы к системе в стадии свободного поиска. На самом деле кросс-табличная визуализация является частью функциональности OLAP. Здесь система только предоставляет матрицу показателей, в которой аналитик может увидеть закономерность. Но само предоставление такой кросс-таблицы имеет целью поиск "шаблонов информации" в данных для поддержки принятия решений, то есть удовлетворяет приведенному определению ИАД. Поэтому неслучайно, что множество авторов все же относит кросс-табличную визуализацию к методам ИАД.

К методам ИАД группы кросс-табуляции относится также использование байесовских сетей (Bayesian Networks), в основе которых лежит теорема Байеса теории вероятностей для определения апостериорных вероятностей составляющих полную группу попарно несовместных событий по их априорным вероятностям. Байесовские сети активно использовались для формализации знаний экспертов в экспертных системах, но с недавних пор стали применяться в ИАД для извлечения знаний из данных.

Можно отметить четыре достоинства байесовских сетей как средства ИАД:

· поскольку в модели определяются зависимости между всеми переменными, легко обрабатываются ситуации, когда значения некоторых переменных неизвестны;

· построенные байесовские сети просто интерпретируются и позволяют на этапе прогностического моделирования легко производить анализ по сценарию "что - если";

· подход позволяет естественным образом совмещать закономерности, выведенные из данных, и фоновые знания, полученные в явном виде (например, от экспертов);

· использование байесовских сетей позволяет избежать проблемы переподгонки (overfitting), то есть избыточного усложнения модели, чем страдают многие методы (например, деревья решений и индукция правил) при слишком буквальном следовании распределению зашумленных данных.

· Байесовские сети предлагают простой наглядный подход ИАД и широко используются на практике.

 

Методы логической индукции

Методы данной группы являются, пожалуй, наиболее выразительными, в большинстве случаев оформляя найденные закономерности в максимально "прозрачном" виде. Кроме того, производимые правила, в общем случае, могут включать как непрерывные, так и дискретные атрибуты. Результатами применения логической индукции могут быть построенные деревья решений или произведенные наборы символьных правил.

Деревья решений

Деревья решений являются упрощенной формой индукции логических правил. Основная идея их использования заключается в последовательном разделении обучающего множества на основе значений выбранного атрибута, в результате чего строится дерево, содержащее:

· терминальные узлы (узлы ответа), задающие имена классов;

· нетерминальные узлы (узлы решения), включающие тест для определенного атрибута с ответвлением к поддереву решений для каждого значения этого атрибута.

 

В таком виде дерево решений определяет классификационную процедуру естественным образом: любой объект связывается с единственным терминальным узлом. Эта связь начинается с корня, проходит путь по дугам, которым соответствуют значения атрибутов, и доходит до узла ответа с именем класса.

Индукция правил

Популярность деревьев решений проистекает из быстроты их построения и легкости использования при классификации. Более того, деревья решений могут быть легко преобразованы в наборы символьных правил - генерацией одного правила из каждого пути от корня к терминальной вершине. Однако, правила в таком наборе будут неперекрывающимися, потому что в дереве решений каждый пример может быть отнесен к одному и только к одному терминальному узлу. Более общим (и более реальным) является случай существования теории, состоящей из набора неиерархических перекрывающихся символьных правил. Значительная часть алгоритмов, выполняющих индукцию таких наборов правил, объединяются стратегией отделения и захвата (separate-and-conquer), или покрывания (covering). Эта стратегия индукции характеризуется следующим образом:

· произвести правило, покрывающее часть обучающего множества;

· удалить покрытые правилом примеры из обучающего множества (отделение);

· последовательно обучиться другим правилам, покрывающим группы оставшихся примеров (захват), пока все примеры не будут объяснены.

 

Сравнение возможностей деревьев решений и индукции правил

Индукция правил и деревья решений, будучи способами решения одной задачи, значительно отличаются по своим возможностям. Несмотря на широкую распространенность деревьев решений, индукция правил по ряду причин представляется более предпочтительным подходом.

1. Деревья решений часто довольно сложны и тяжелы для понимания.

2. Непременное требование неперекрываемости правил в алгоритмах обучения деревьев решений навязывает жесткое ограничение на возможность выражения существующих закономерностей. Одна из проблем, вытекающих из этого ограничения - проблема дублированного поддерева. Часто случается, что идентичные поддеревья оказываются в процессе обучения в разных местах дерева решений вследствие фрагментации пространства исходных примеров, обязательной по ограничению на неперекрываемость правил. Индукция отделения и захвата не ставит такого ограничения и, следовательно, менее чувствительна к этой проблеме.

3. Построение деревьев решений затруднено при большом количестве исходной информации (что чаще всего имеет место при интеллектуальном анализе хранилищ данных). Для решения этой проблемы часто выделяют относительно небольшое подмножество имеющихся обучающих примеров и на его основе сооружают дерево решений. Такой подход во многих случаях приводит к потере информации, скрытой в проигнорированных при индукции примерах.

С другой стороны, индукция правил осуществляется значительно более сложными (и медленными) алгоритмами, чем индукция деревьев решений. Особенно большие трудности возникают с поступрощением построенной теории, в отличие от простоты подрезания деревьев решений: отсечение ветвей в дереве решений никогда не затронет соседние ветви, тогда как отсечение условий правила оказывает влияние на все перекрывающиеся с ним правила.

С другой стороны, отсечение условий от правила означает его обобщение, то есть в новом виде оно будет покрывать больше положительных и больше отрицательных примеров. Следовательно, эти дополнительные положительные и отрицательные примеры должны быть исключены из обучающего множества, дабы не воздействовать на индукцию последующих правил

Следовательно, исходя из проведенного сравнения, можно заключить, что построение деревьев решений оправдано в несложных задачах при небольшом количестве исходной информации благодаря простоте и быстроте их индукции. Однако при анализе больших объемов данных, накопленных в хранилищах, использование методов индукции правил предпочтительнее, несмотря на их относительную сложность.

 

3. Методы вывода уравнений

Методы вывода уравнений пытаются выразить закономерности, скрытые в данных, в форме математических выражений. Поэтому они способны работать только с атрибутами численного типа, тогда как другие атрибуты должны быть искусственно закодированы численными значениями. Отсюда вытекает несколько проблем, ограничивающих использование этих методов на практике. Тем не менее, они широко применяются во многих приложениях.

Статистика

Классические методы статистического анализа применяются в средствах ИАД чаще всего для решения задачи прогнозирования.

1. Выявление тенденций динамических рядов. Тенденцию среднего уровня можно представить в виде графика или аналитической функции, вокруг значения которой варьируют фактические значения уровней исследуемого процесса. Часто тенденции среднего уровня называют детерминированной компонентой процесса. Детерминированная компонента обычно представляется достаточно простой аналитической функцией - линейной, параболической, гиперболической, экспоненциальной, - параметры которой подбираются согласно историческим данным для лучшей аппроксимации исторических данных.

2. Гармонический анализ. Во многих случаях сглаживание рядов динамики с помощью определения тренда не дает удовлетворительных результатов, так как в остатках наблюдается автокоppеляция. Причиной автокоppелиpованности остатков могут быть нередко встречающиеся в pядах динамики заметные периодические колебания относительно выделенной тенденции. В таких случаях следует прибегать к гармоническому анализу, то есть к выделению из динамического ряда периодической составляющей. По результатам выделения из динамического ряда тренда и периодической составляющей может выполняться статистический прогноз процесса по принципу экстраполяции, по предположению, что параметры тренда и колебаний сохранятся для прогнозируемого периода.

3. Корреляционно-регрессионный анализ. В отличие от функциональной (жестко детерминированной) связи, статистическая (стохастически детерминированная) связь между переменными имеет место тогда, когда с изменением значения одной из них вторая может в определенных пределах принимать любые значения с некоторыми вероятностями, но ее среднее значение или иные статистические характеристики изменяются по определенному закону. Частным случаем статистической связи, когда различным значениям одной переменной соответствуют различные средние значения другой, является корреляционная связь. Метод корреляционно-регрессионного анализа хорошо изучен и широко применяется на практике. Получаемые в результате применения анализа корреляционно-регрессионные модели (КРМ) обычно достаточно хорошо интерпретируемы и могут использоваться в прогностическом моделировании. Но невозможно применять этот вид анализа, не имея глубоких знаний в области статистики. Теоретическая подготовка аналитика играет здесь особенно важную роль, поэтому немногие существующие средства ИАД предлагают метод корреляционно-регрессионного анализа в качестве одного из инструментов обработки данных.

4. Корреляция рядов динамики. Проблема изучения причинных связей во времени очень сложна, и полное решение всех задач такого изучения до сих пор не разработано. Основная сложность состоит в том, что при наличии тренда за достаточно длительный промежуток времени большая часть суммы квадратов отклонений связана с трендом; при этом, если два признака имеют тренды с одинаковым направлением изменения уровней, то это вовсе не будет означать причинной зависимости. Следовательно, чтобы получить реальные показатели корреляции, необходимо абстрагироваться от искажающего влияния трендов - вычислить отклонения от трендов и измерить корреляцию колебаний. Однако, не всегда допустимо переносить выводы о тесноте связи между колебаниями на связь рядов динамики в целом.

Нейронные сети

Искусственные нейронные сети как средство обработки информации моделировались по аналогии с известными принципами функционирования биологических нейронных сетей. Их структура базируется на следующих допущениях:

· обработка информации осуществляется во множестве простых элементов - нейронов;

· сигналы между нейронами передаются по связям от выходов ко входам;

· каждая связь характеризуется весом, на который умножается передаваемый по ней сигнал;

· каждый нейрон имеет активационную функцию (как правило, нелинейную), аргумент которой рассчитывается как сумма взвешенных входных сигналов, а результат считается выходным сигналом.

 

Таким образом, нейронные сети представляют собой наборы соединенных узлов, каждый из которых имеет вход, выход и активационную функцию (как правило, нелинейную). Они обладают способностью обучаться на известном наборе примеров обучающего множества. Обученная нейронная сеть представляет собой "черный ящик" (нетрактуемую или очень сложно трактуемую прогностическую модель), которая может быть применена в задачах классификации, кластеризации и прогнозирования.

· Обучение нейронной сети заключается в подстройке весовых коэффициентов, связывающих выходы одних нейронов со входами других. Обучение сети может производиться по одному из двух базовых сценариев:

· обучение с учителем (supervised training) - наиболее типичный случай, когда для каждого вектора значений входных переменных примера обучающего множества известен желаемый вектор значений выходных переменных; такой способ обучения применяется в задачах классификации и прогнозирования;

· обучение без учителя (unsupervised learning) - механизм настройки весов сети в случае, когда известны только значения входных переменных примеров обучающего множества; обученные таким способом нейронные сети выполняют задачу кластеризации.

Имеется ряд недостатков, ограничивающих использование нейронных сетей в качестве инструмента ИАД.

1. Обученные нейронные сети являются нетрактуемыми моделями - "черными ящиками", поэтому логическая интерпретация описанных ими закономерностей практически невозможна (за исключением простейших случаев).

2. Будучи методом группы вывода уравнений, нейронные сети могут обрабатывать только численные переменные. Следовательно, переменные других типов, как входные, так и выходные, должны быть закодированы числами. При этом недостаточно заменить переменную, принимающую значения из некоторой области определения, одной численной переменной, так как в этом случае могут быть получены некорректные результаты. Таким образом, при большом количестве нечисловых переменных с большим количеством возможных значений использование нейронных сетей становится совершенно невозможным.

Главной проблемой обучения нейронных сетей является синтез структуры сети, способной обучиться на заданном обучающем множестве. Нет никакой гарантии, что процесс обучения сети определенной структуры не остановится, не достигнув допустимого порога ошибки, или не попадет в локальный минимум. Хотя многослойные сети широко применяются для классификации и аппроксимации функций, их структурные параметры до сих пор должны определяться путем проб и ошибок.

Таким образом, нейронные сети - довольно мощный и гибкий инструмент ИАД - должны применяться с известной осторожностью и подходят не для всех проблем, требующих интеллектуального анализа корпоративных данных.

 

4. Типы закономерностей

Выделяют пять стандартных типов закономерностей, которые позволяют выявлять методы Data Mining: ассоциация, последовательность, классификация, кластеризация и прогнозирование.

Ассоциация имеет место в том случае, если несколько событий связаны друг с другом. Например, исследование, проведенное в супермаркете, может показать, что 65% купивших кукурузные чипсы берут также и "кока-колу", а при наличии скидки за такой комплект "колу" приобретают в 85% случаев. Располагая сведениями о подобной ассоциации, менеджерам легко оценить, насколько действенна предоставляемая скидка.

Если существует цепочка связанных во времени событий, то говорят о последовательности. Так, например, после покупки дома в 45% случаев в течение месяца приобретается и новая кухонная плита, а в пределах двух недель 60% новоселов обзаводятся холодильником.

С помощью классификации выявляются признаки, характеризующие группу, к которой принадлежит тот или иной объект. Это делается посредством анализа уже классифицированных объектов и формулирования некоторого набора правил.

Кластеризация отличается от классификации тем, что сами группы заранее не заданы. С помощью кластеризации средства Data Mining самостоятельно выделяют различные однородные группы данных.

Основой для всевозможных систем прогнозирования служит историческая информация, хранящаяся в БД в виде временных рядов. Если удается построить, найти шаблоны, адекватно отражающие динамику поведения целевых показателей, есть вероятность, что с их помощью можно предсказать и поведение системы в будущем.

Особенно широко методы ИАД применяются в бизнес-приложениях аналитиками и руководителями компаний. Для этих категорий пользователей разрабатываются инструментальные средства высокого уровня, позволяющие решать достаточно сложные практические задачи без специальной математической подготовки. Актуальность использования ИАД в бизнесе связана с жесткой конкуренцией, возникшей вследствие перехода от «рынка производителя» к «рынку потребителя». В этих условиях особенно важно качество и обоснованность принимаемых решений, что требует строгого количественного анализа имеющихся данных. При работе с большими объемами накапливаемой информации необходимо постоянно оперативно отслеживать динамику рынка, а это практически невозможно без автоматизации аналитической деятельности.

5. Типовые задачи для методов ИАД

Прогнозирование – одна из самых распространенных задач ИАД. В частности, при планировании и составлении бюджета необходимо прогнозировать объемы продаж и другие параметры с учетом многочисленных взаимосвязанных факторов – сезонных, региональных, общеэкономических и т.д. Можно также выявлять корреляции в продажах, например «покупке компьютера, как правило, сопутствует покупка блока бесперебойного питания».

Маркетинговый анализ. Чтобы разработать эффективный маркетинговый план, нужно знать, каким образом на уровень продаж влияют такие факторы как стоимость товара, затраты на продвижение продукции и рекламу. Нейросетевые модели позволяют менеджерам и аналитикам прогнозировать подобное влияние.

Анализ работы персонала. Производительность труда служащих зависит от уровня подготовки, от оплаты труда, опыта работы, взаимоотношений с руководством и т.д. Проанализировав влияние этих факторов, можно выработать методику повышения производительности труда, а также предложить оптимальную стратегию подбора кадров в будущем.

Анализ эффективности продажи товаров по почте. Если компания занимается рассылкой рекламы и образцов продукции по почте, то имеет смысл оценить эффективность подобной деятельности. При этом можно выявить круг потенциальных покупателей, и оценить вероятность совершения ими покупки. Кроме того, можно опробовать различные формы переписки и выбрать наиболее удачные.

Профилирование клиентов. С помощью нейросетевых моделей можно среди многочисленных клиентов фирмы выбрать тех, сотрудничество с которыми наиболее выгодно – получить портрет «типичного клиента компании». Кроме того, можно выяснить, почему работа с некоторыми из заказчиков стала неэффективной, и выработать стратегию поиска подходящих клиентов в будущем. Эта задача чаще всего решается менеджерами по продажам, а для банков, например, особый интерес представляет возможность оценки кредитоспособности клиентов.

Оценка потенциальных клиентов. Планируя предварительные переговоры имеет смысл определить, с какой долей вероятности они закончатся заключением договора (или продажей продукции). Анализ опыта работы с клиентами позволяет выявить характерные особенности тех заявок, которые закончились реальными продажами. Используя результаты данного анализа, менеджеры могут остановиться на более перспективных заявках клиентов.

Анализ результатов маркетинговых исследований. Чтобы оценить реакцию покупателей на политику компании в области распространения продукции, ценообразования, а также на характеристики самой продукции, необходимо, наряду с анализом продаж, проводить опросы покупателей. Это позволяет усовершенствовать процесс принятия решений по ценам и характеристикам выпускаемой продукции (дизайн, функциональность, упаковка).

Анализ работы региональных отделений компании. С помощью нейросетевых моделей можно сравнивать результаты деятельности региональных отделений или филиалов компании и определять, от чего зависит эффективность их работы (географическое положение, численность персонала, ассортимент продукции/услуг и т.д.). Результаты используются для оптимизации работы «отстающих» отделений, а также при планировании создания новых филиалов.

Сравнительный анализ конкурирующих фирм. Почему некоторые компании процветают и удерживают прочные позиции на рынке, а другие нет? Какие сферы бизнеса самые выгодные? Чтобы ответить на эти вопросы можно сравнить деятельность конкурирующих компаний и выяснить, какие факторы определяют прибыльность их бизнеса.

Очевидно, что перечисленные виды задач актуальны практически для всех отраслей бизнеса: банковского дела и страхования (выявление злоупотреблений с кредитными карточками, оценка кредитных рисков, оценка закладных, выявление профилей пользователей, оценка эффективности региональных отделений, вероятность подачи заявки на выплату страховки и др.), финансовых рынков (прогнозирование, анализ портфелей, моделирование индексов), производства (прогнозирование спроса, контроль качества, оценка дизайна продукции), торговли и т. д.

Почему растет популярность Data mining?

Необходимость автоматизированного интеллектуального анализа данных стала очевидной в

1. первую очередь из-за огромных массивов исторической и вновь собираемой информации. Трудно даже приблизительно оценить объем ежедневных данных, накапливаемых различными компаниями, государственными, научными и медицинскими организациями. Человеческий ум, даже такой тренированный, как ум профессионального аналитика, просто не в состоянии своевременно анализировать столь огромные информационные потоки.

2. Другой причиной роста популярности data mining является объективность получаемых результатов. Человеку-аналитику, в отличие от машины, всегда присущ субъективизм, он в той или иной степени является заложником уже сложившихся представлений. Иногда это полезно, но чаще приносит большой вред.

3. И, наконец, data mining дешевле. Оказывается, что выгоднее инвестировать деньги в решения data mining, чем постоянно содержать целую армию высокоподготовленных и дорогих профессиональных статистиков.

Data mining вовсе не исключает полностью человеческую роль, но значительно упрощает процесс поиска знаний, делая его доступным для более широкого круга аналитиков, не являющихся специалистами в статистике, математике или программировании.

6. Области применения Data mining

 

1. Маркетинг Рыночная сегментация, идентификация целевых групп, построение профиля клиента
2. Банковское дело: Анализ кредитных рисков, привлечение и удержание клиентов, управление ресурсами
3. Кредитные компании Детекция подлогов, формирование "типичного поведения" обладателя кредитки, анализ достоверности клиентских счетов, cross-selling программы
4. Страховые компании Привлечение и удержание клиентов, прогнозирование финансовых показателей
5. Розничная торговля Анализ деятельности торговых точек, построение профиля покупателя, управление ресурсами
6. Биржевые трейдеры Выработка оптимальной торговой стратегии, контроль рисков
7. Телекоммуникация и энергетика Привлечение клиентов, ценовая политика, анализ отказов, предсказание пиковых нагрузок, прогнозирование поступления средств
8. Налоговые службы и аудиторы Детекция подлогов, прогнозирование поступлений в бюджет
9. Фармацевтические компании Предсказание результатов будущего тестирования препаратов, программы испытания
10. Медицина Диагностика, выбор лечебных воздействий, прогнозирование исхода хирургического вмешательства
11. Управление производством Контроль качества, материально-техническое обеспечение, оптимизация технологического процесса
12. Ученые и инженеры Построение эмпирических моделей, основанных на анализе данных, решение научно-технических задач

 

Рассмотрим некоторые бизнес-приложения Data Mining.

 

Розничная торговля

Предприятия розничной торговли сегодня собирают подробную информацию о каждой отдельной покупке, используя кредитные карточки с маркой магазина и компьютеризованные системы контроля. Вот типичные задачи, которые можно решать с помощью Data Mining в сфере розничной торговли:

· анализ покупательской корзины (анализ сходства) предназначен для выявления товаров, которые покупатели стремятся приобретать вместе. Знание покупательской корзины необходимо для улучшения рекламы, выработки стратегии создания запасов товаров и способов их раскладки в торговых залах.

· исследование временных шаблонов помогает торговым предприятиям принимать решения о создании товарных запасов. Оно дает ответы на вопросы типа "Если сегодня покупатель приобрел видеокамеру, то через какое время он вероятнее всего купит новые батарейки и пленку?"

· создание прогнозирующих моделей дает возможность торговым предприятиям узнавать характер потребностей различных категорий клиентов с определенным поведением, например, покупающих товары известных дизайнеров или посещающих распродажи. Эти знания нужны для разработки точно направленных, экономичных мероприятий по продвижению товаров.

Банковское дело

Достижения технологии Data Mining используются в банковском деле для решения следующих распространенных задач:

· выявление мошенничества с кредитными карточками. Путем анализа прошлых транзакций, которые впоследствии оказались мошенническими, банк выявляет некоторые стереотипы такого мошенничества.

· сегментация клиентов. Разбивая клиентов на различные категории, банки делают свою маркетинговую политику более целенаправленной и результативной, предлагая различные виды услуг разным группам клиентов.

· прогнозирование изменений клиентуры. Data Mining помогает банкам строить прогнозные модели ценности своих клиентов, и соответствующим образом обслуживать каждую категорию.

Телекоммуникации

В области телекоммуникаций методы Data Mining помогают компаниям более энергично продвигать свои программы маркетинга и ценообразования, чтобы удерживать существующих клиентов и привлекать новых. Среди типичных мероприятий отметим следующие:

· анализ записей о подробных характеристиках вызовов. Назначение такого анализа — выявление категорий клиентов с похожими стереотипами пользования их услугами и разработка привлекательных наборов цен и услуг;

· выявление лояльности клиентов. Data Mining можно использовать для определения характеристик клиентов, которые, один раз воспользовавшись услугами данной компании, с большой долей вероятности останутся ей верными. В итоге средства, выделяемые на маркетинг, можно тратить там, где отдача больше всего.

Страхование

Страховые компании в течение ряда лет накапливают большие объемы данных. Здесь обширное поле деятельности для методов Data Mining:

· выявление мошенничества. Страховые компании могут снизить уровень мошенничества, отыскивая определенные стереотипы в заявлениях о выплате страхового возмещения, характеризующих взаимоотношения между юристами, врачами и заявителями.

· анализ риска. Путем выявления сочетаний факторов, связанных с оплаченными заявлениями, страховщики могут уменьшить свои потери по обязательствам. Известен случай, когда в США крупная страховая компания обнаружила, что суммы, выплаченные по заявлениям людей, состоящих в браке, вдвое превышает суммы по заявлениям одиноких людей. Компания отреагировала на это новое знание пересмотром своей общей политики предоставления скидок семейным клиентам.

Другие приложения в бизнесе

Data Mining может применяться во множестве других областей:

· развитие автомобильной промышленности. При сборке автомобилей производители должны учитывать требования каждого отдельного клиента, поэтому им нужны возможность прогнозирования популярности определенных характеристик и знание того, какие характеристики обычно заказываются вместе;

· политика гарантий. Производителям нужно предсказывать число клиентов, которые подадут гарантийные заявки, и среднюю стоимость заявок;

· поощрение часто летающих клиентов. Авиакомпании могут обнаружить группу клиентов, которых данными поощрительными мерами можно побудить летать больше. Например, одна авиакомпания обнаружила категорию клиентов, которые совершали много полетов на короткие расстояния, не накапливая достаточно миль для вступления в их клубы, поэтому она таким образом изменила правила приема в клуб, чтобы поощрять число полетов так же, как и мили.

 

7. Классы систем Data Mining

Data Mining является мультидисциплинарной областью, возникшей и развивающейся на базе достижений прикладной статистики, распознавания образов, методов искусственного интеллекта, теории баз данных и др. Отсюда обилие методов и алгоритмов, реализованных в различных действующих системах Data Mining. Многие из таких систем интегрируют в себе сразу несколько подходов. Тем не менее, как правило, в каждой системе имеется какая-то ключевая компонента, на которую делается главная ставка. Приведем классификацию указанных ключевых компонент с краткой характеристикой для каждого класса.

 

Индустриальные системы Data mining

В настоящее время большинство ведущих в мире производителей программного обеспечения предлагает свои продукты и решения в области Data mining. Как правило - это масштабируемые системы, в которых реализованы различные математические алгоритмы анализа данных. Они имеют развитый графический интерфейс, богатые возможности в визуализации и манипулирования с данными, предоставляют доступ к различным источникам данных, функционирующих в архитектуре клиент/сервер на Intel или UNIX платформах. Вот несколько примеров таких систем:

· PolyAnalyst (Мегапьютер Интеллидженс)

· Intelligent Miner (IBM)

· Interprise Miner (SAS)

· Clementine (Integral Solutions)

· MineSet (Silicon Graphics)

· Knowledge Studio (Angoss Software)

 

Предметно-ориентированные аналитические системы

Предметно-ориентированные аналитические системы очень разнообразны. Эти системы решают узкий класс специализированных задач. Наиболее широкий подкласс таких систем, получивший распространение в области исследования финансовых рынков, носит название "технический анализ". Он представляет собой совокупность нескольких десятков методов прогноза динамики цен и выбора оптимальной структуры инвестиционного портфеля, основанных на различных эмпирических моделях динамики рынка. Эти методы часто используют несложный статистический аппарат, но максимально учитывают сложившуюся в своей области специфику (профессиональный язык, системы различных индексов и пр.).

На рынке имеется множество программ этого класса. Как правило, они довольно дешевы (обычно $300–1000).

Хорошим примером являются программы технического анализа финансовых рынков:

· MetaStock (Equis International, USA)

· SuperCharts (Omega Research, USA)

· Candlestick Forecaster (IPTC, USA)

· Wall Street Money (Market Arts, USA)

 

Статистические пакеты

Это мощные математические системы, предназначенные для статистической обработки данных любой природы. Они включают многочисленные инструменты статистического анализа, имеют развитые графические средства. Главный недостаток систем этого класса - их невозможно эффективно применять для анализа данных, не имея глубоких знаний в области статистики. Неподготовленный пользователь должен пройти специальный курс обучения.

Примеры систем:

· SAS (SAS Institute, USA)

· SPSS (SPSS, USA)

· Statgraphics (Statistical Graphics, USA)

 

Нейроннoсетевые пакеты

Это широкий класс разнообразных систем, представляющих собой иерархические сетевые структуры, в узлах которых находятся так называемые нейроны. Сети тренируются на примерах, и во многих случаях дают хорошие результаты предсказаний. Основными недостатками нейронных сетей являются необходимость иметь очень большой объем обучающей выборки, а также трудности в интерпретации результатов. Тренированная нейронная сеть представляет собой "умный черный ящик", работу которого невозможно понять и контролировать.

Примеры нейронно-сетевых пакетов:

· BrainMaker (CSS, USA)

· NeuroShell (Ward Systems Group, USA)

· OWL (Hyperlogic, USA)

 

Пакеты, реализующие алгоритмы "Decision trees"

Деревья решения являются одним из наиболее популярных подходов к решению задач Data Mining. Этот метод используется только для решения задач классификации. Это является его серьезным ограничением. Результатом работы метода является иерархическая древовидная структура классификационных правил типа "IF...THEN...". Для принятия решения, к какому классу отнести некоторый объект или ситуацию, требуется ответить на вопросы, стоящие в узлах этого дерева, начиная с его корня. Вопросы имеют вид "значение параметра A больше x?". Если ответ положительный, осуществляется переход к правому узлу следующего уровня, если отрицательный — то к левому узлу; затем снова следует вопрос, связанный с соответствующим узлом. Достоинством метода является естественная способность классификации на множество классов.

Примеры систем:

· C5.0 (Rule Quest, Australia)

· SIPINA (University of Lyon, France)

· IDIS (Information Discovery, USA)

Системы рассуждений на основе аналогичных случаев (case based reasoning - CBR)

Идея систем case based reasoning - CBR - крайне проста. Для того чтобы сделать прогноз на будущее или выбрать правильное решение, эти системы находят в прошлом близкие аналоги наличной ситуации и выбирают тот же ответ, который был для них правильным. Поэтому этот метод еще называется методом "ближайшего соседа" (nearest neighbour). Системы CBR показывают очень хорошие результаты в самых разнообразных задачах.

Главный их минус заключается в том, что они вообще не создают каких-либо моделей или правил, обобщающих предыдущий опыт, - в выборе решения они основываются на всем массиве доступных исторических данных, поэтому невозможно сказать, на основе каких конкретно факторов CBR системы строят свои ответы. Другой минус заключается в произволе, который допускают системы CBR при выборе меры "близости". От этой меры самым решительным образом зависит объем множества прецедентов, которые нужно хранить в памяти для достижения удовлетворительной классификации или прогноза.

Примеры систем:

· KATE tools (Acknosoft, Франция),

· Pattern Recognition Workbench (Unica, США).

 

Генетические алгоритмы

Строго говоря, интеллектуальный анализ данных - далеко не основная область применения генетических алгоритмов, которые, скорее, нужно рассматривать как мощное средство решения разнообразных комбинаторных задач и задач оптимизации. Тем не менее, генетические алгоритмы вошли сейчас в стандартный инструментарий методов data mining. Этот метод назван так потому, что в какой-то степени имитирует процесс естественного отбора в природе.

Первый шаг при построении генетических алгоритмов — это кодировка исходных логических закономерностей в базе данных, которые именуют хромосомами, а весь набор таких закономерностей называют популяцией хромосом. Далее для реализации концепции отбора вводится способ сопоставления различных хромосом. Популяция обрабатывается с помощью процедур репродукции, изменчивости (мутаций), генетической композиции. Эти процедуры имитируют биологические процессы.

Генетические алгоритмы имеют ряд недостатков. Критерий отбора хромосом и используемые процедуры являются эвристическими и далеко не гарантируют нахождения “лучшего” решения. Как и в реальной жизни, эволюцию может “заклинить” на какой-либо непродуктивной ветви.

Пример системы:

GeneHunter фирмы Ward Systems Group.

Эволюционное программирование

Проиллюстрируем современное состояние данного подхода на примере системы PolyAnalyst — отечественной разработке, получившей сегодня общее признание на рынке Data Mining. В данной системе гипотезы о виде зависимости целевой переменной от других переменных формулируются в виде программ на некотором внутреннем языке программирования. Процесс построения программ строится как эволюция в мире программ (этим подход немного похож на генетические алгоритмы). Когда система находит программу, более или менее удовлетворительно выражающую искомую зависимость, она начинает вносить в нее небольшие модификации и отбирает среди построенных дочерних программ те, которые повышают точность. Таким образом, система "выращивает" несколько генетических линий программ, которые конкурируют между собой в точности выражения искомой зависимости. Специальный модуль системы PolyAnalyst переводит найденные зависимости с внутреннего языка системы на понятный пользователю язык (математические формулы, таблицы и пр.).

Другое направление эволюционного программирования связано с поиском зависимости целевых переменных от остальных в форме функций какого-то определенного вида. Например, в одном из наиболее удачных алгоритмов этого типа — методе группового учета аргументов (МГУА) зависимость ищут в форме полиномов. В настоящее время из продающихся в России систем МГУА реализован в системе NeuroShell компании Ward Systems Group.

8. Интеграция OLAP и ИАД

Оперативная аналитическая обработка и интеллектуальный анализ данных - две составные части процесса поддержки принятия решений. Но сегодня большинство систем OLAP заостряет внимание только на обеспечении доступа к многомерным данным, а большинство средств ИАД, работающих в сфере закономерностей, имеют дело с одномерными перспективами данных. Эти два вида анализа должны быть тесно объединены, то есть системы OLAP должны фокусироваться не только на доступе, но и на поиске закономерностей. Как заметил N. Raden, "многие компании создали ... прекрасные хранилища данных, идеально разложив по полочкам горы неиспользуемой информации, которая сама по себе не обеспечивает ни быстрой, ни достаточно грамотной реакции на рыночные события".

K. Parsaye вводит составной термин "OLAP Data Mining" (многомерный интеллектуальный анализ) для обозначения такого объединения (рис. 4). J. Han предлагает еще более простое название - "OLAP Mining", и предлагает несколько вариантов интеграции двух технологий.

1. "Cubing then mining". Возможность выполнения интеллектуального анализа должна обеспечиваться над любым результатом запроса к многомерному концептуальному представлению, то есть над любым фрагментом любой проекции гиперкуба показателей.

2. "Mining then cubing". Подобно данным, извлечённым из хранилища, результаты интеллектуального анализа должны представляться в гиперкубической форме для последующего многомерного анализа.

3. "Cubing while mining". Этот гибкий способ интеграции позволяет автоматически активизировать однотипные механизмы интеллектуальной обработки над результатом каждого шага многомерного анализа (перехода между уровнями обобщения, извлечения нового фрагмента гиперкуба и т. д.).

К сожалению, очень немногие производители предоставляют сегодня достаточно мощные средства интеллектуального анализа многомерных данных в рамках систем OLAP. Проблема также заключается в том, что некоторые методы ИАД (байесовские сети, метод k-ближайшего соседа) неприменимы для задач многомерного интеллектуального анализа, так как основаны на определении сходства детализированных примеров и не способны работать с агрегированными данными.

 

Рисунок 4. Архитектура системы многомерного

интеллектуального анализа данных

 

Рынок систем Data Mining экспоненциально развивается. В этом развитии принимают участие практически все крупнейшие корпорации.

Системы Data Mining применяются по двум основным направлениям:

1) как массовый продукт для бизнес-приложений;

2) как инструменты для проведения уникальных исследований (генетика, химия, медицина и пр.).

 

Лидеры Data Mining связывают будущее этих систем с использованием их в качестве интеллектуальных приложений, встроенных в корпоративные хранилища данных.

Несмотря на обилие методов Data Mining, приоритет постепенно все более смещается в сторону логических алгоритмов поиска в данных if-then правил. С их помощью решаются задачи прогнозирования, классификации, распознавания образов, сегментации БД, извлечения из данных “скрытых” знаний, интерпретации данных, установления ассоциаций в БД и др. Результаты таких алгоритмов эффективны и легко интерпретируются.

Вместе с тем, главной проблемой логических методов обнаружения закономерностей является проблема перебора вариантов за приемлемое время. Известные методы либо искусственно ограничивают такой перебор, либо строят деревья решений, имеющих принципиальные ограничения эффективности поиска if-then правил. Другие проблемы связаны с тем, что известные методы поиска логических правил не поддерживают функцию обобщения найденных правил и функцию поиска оптимальной композиции таких правил. Удачное решение указанных проблем может составить предмет новых конкурентоспособных разработок.

Компьютерные технологии автоматического интеллектуального анализа данных переживают бурный расцвет. На российском рынке эта технология пока делает лишь первые шаги. Отчасти это можно объяснить высокой стоимостью систем data mining, но, как показывает история развития других сегментов компьютерного рынка России, сам по себе этот фактор вряд ли является определяющим. Скорее здесь проявляется действие некоторых специфичных для России негативных факторов, резко уменьшающих эффективность применения технологии data mining.

Начнем с характеристики российской специфики. Компьютерные системы поддержки принятия решений, в принципе, могут основываться на двух подходах.

Первый, более традиционный, заключается в том, что в системе фиксируется опыт эксперта, который и используется для выработки оптимального в данной ситуации решения.

Второй, системы пытаются найти решения на основе анализа исторических данных, описывающих поведение изучаемого объекта, принятые в прошлом решения, их результаты и т.д.

С этим очевидным обстоятельством связана главная трудность продвижения технологии data mining в России: отличительная черта большинства российских предприятий - сравнительно небольшой срок их существования. Характерный "возраст" накопленных ими баз данных составляет 2-3 года, и, как показывает опыт, информации, содержащейся в этих базах данных, часто оказывается недостаточно для выработки на ее основе эффективной стратегии принятия решений с помощью систем data mining.

Другой отличительной чертой российской экономики, как на макро-уровне, так и на уровне отдельных предприятий является ее нестабильность; кроме того, она подвержена и действию многочисленных неожиданно возникающих факторов. В то время как на Западе предприятия в основном работают в рамках уже устоявшейся законодательной базы, в сложившихся структурах товарных, финансовых и информационных потоков, российские предприятия вынуждены подстраиваться под постоянно меняющиеся правила игры.

Наконец, еще одно обстоятельство влияет на применение систем добычи знаний в российских условиях. Оно связано с тем, что люди, ответственные за принятие решений в бизнесе и финансах, обычно не являются специалистами по статистике и искусственному интеллекту и поэтому не могут непосредственно использовать системы интеллектуального анализа данных, требующие сложной настройки или специальной подготовки данных. Поэтому важными факторами, определяющими коммерческий успех систем интеллектуального анализа данных в России, являются простота в использовании и высокая степень автоматизма.







Тема 7. Инструментальные средства автоматизации аналитической работы и планирования.

1. Инструментальные средства поддержки аналитической работы и их классификация.

2. Аналитические инструментальные средства пакетов прикладных программ широкого применения.

3. Специализированные информационно-аналитические системы.

 

1. Инструментальные средства поддержки аналитической работы и их классификация

       В реальности, аналитическая работа на современных предприятиях пока ещё носит частично автоматизированный характер ввиду ряда причин:

· отсутствия опыта у IT специалистов и знания рынка средств автоматизации поддержки аналитической деятельности и возможностей этих средств;

· дороговизна профессиональных средств поддержки аналитической деятельности;

· отсутствие формализации бизнес процессов, протекающих на предприятии, что делает невозможным регламентный сбор информации;

· сильная децентрализация собираемой первичной информации по отдельным системам;

· отсутствие интеграции между информационными системами, работающими в рамках разных предметных технологий внутри одного предприятия;

· и др.

 

Поэтому до сих пор разрабатываются и пользуются большой популярностью отдельные информационные системы, автоматизирующие части общей аналитической технологии. Исходя из понятия и содержания аналитической работы можно выделить следующие направления инструментов поддержки аналитической работы, автоматизирующих её в различных пределах:

· универсальные программные продукты, которые можно использовать для сбора и просмотра данных (excel, Access и др.);

· универсальные программные продукты, которые могут производить групповые действия с произвольными наборами данных (Excel, Statistica, Mathcad) – отсутствие мета-моделей предметной области и заранее подготовленного набора отчётов;

· отдельные программные продукты, которые могут автоматизировать не профильные для аналитической работы операции (например, копирование данных, рассылка подготовленных отчётов и т.д.);

· специализированные аналитические системы, поддерживающие ведение мета-моделей предметной области и содержащие репозиторий заранее подготовленных к использованию отчётов, но автоматизирующие лишь часть из общей концепции BI;

· полноценные профессиональные ИАС, автоматизирующие большинство аспектов и задач аналитической деятельности на предприятии.

 

2 Аналитические инструментальные средства пакетов прикладных программ широкого применения

Скорее всего, никто не будет возражать против того, что пакет программ Microsoft Office является самым распространённым среди большинства пользователей ПК – все пользуются текстовым редактором Word для составления бланков, рефератов, дипломов, договоров, отчётов и других документов. Все также пользуются электронной таблице Excel для создания таблиц, отчётов, диаграмм и проведения расчётов. Но, умея пользовать базовой функциональностью Excel, лишь немногие знают, что в их руках находится гибкий аналитический инструментарий. Остановимся более подробно на его аналитических возможностях.

Основным инструментом анализа внутри Excel являются сводные таблицы. Сводная таблица Excel (PivotTable) представляет собой интерактивную таблицу, применяемую для суммирования или статистического анализа большого количества исходных данных, обычно содержащихся в одном из диапазонов ячеек Excel, либо являющихся результатом запроса к какой–либо базе данных. Строки и столбцы подобной интерактивной таблицы базируются на данных из нескольких столбцов исходной таблицы. Ячейки сводной таблицы представляют собой суммы значений одного из числовых полей исходной таблицы. При этом суммирование производиться для тех строк исходной таблицы, в которых значения столбцов, образовавших столбцы и строки сводной таблицы, совпадают с именами строк и столбцов сводной таблицы, на пересечении которых находится данная ячейка. В некоторых источниках сводные таблицы называют перекрестными таблицами или кросс-таблицами.










Последнее изменение этой страницы: 2018-05-10; просмотров: 257.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...