Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Полярность связей и молекул




В молекулах положительные заряды ядер скомпенси­рованы отрицательными зарядами электронов. Однако по­ложительные и отрицательные заряды могут быть про­странственно разделены. Предположим, что молекула со­стоит из атомов разных элементов (НС1, СО и т. д.). В этом случае электроны смещены к атому с большей электроотрицательностью и центры тяжести положительных и отрицательных зарядов не совпадают, образуется электри­ческий диполь — система из двух равных по величине и противоположных по знаку зарядов q, находящихся на расстоянии l, называемом длиной диполя. Длина дипо­ля — векторная величина. Ее направление условно приня­то от отрицательного заряда к положительному. Такие мо­лекулы называют полярными молекулами или диполями.

Полярность молекулы тем больше, чем больше абсо­лютная величина заряда и длина диполя. Мерой поляр­ности служит произведение q . l, называемое электрическим моментом диполя μ: μ = q . l.

Единицей измерения μ служит Дебай (Д). 1 Д = 3,3 . 10 -30 Кл . м.

В молекулах, состоящих из двух одинаковых атомов μ = 0. Их называют неполярными. Если такая частица попадает в электрическое поле, то в ней под действием поля произойдет поляризация — смещение центров тя­жести положительных и отрицательных зарядов. В час­тице возникает электрический момент диполя, называе­мый наведенным диполем.

Дипольный момент двухатомной молекулы АВ можно отождествить с дипольным моментом связи А—В в ней. Если общая электронная пара смещена к одному из атомов, то электрический момент диполя связи не равен нулю. Связь в этом случае называется полярной ковалентной связью. Если электронная пара симметрично расположена относительно атомов, то связь называется неполярной.

В многоатомной молекуле определенный электричес­кий момент диполя можно приписать каждой связи. Тогда электрический момент диполя молекулы может быть представлен как векторная сумма электрических мо­ментов диполя отдельных связей. Существование или от­сутствие момента диполя у молекулы связано с ее сим­метрией. Молекулы, имеющие симметричное строение, неполярны (μ = 0). К ним относятся двухатомные моле­кулы с одинаковыми атомами (Н2, С12 и др.), молекула бензола, молекулы с полярными связями BF3, A1F3, CO2, ВеС12 и др.

Электрический момент диполя молекулы является важным молекулярным параметром. Знание величины μ может указать на геометрическую структуру молекулы. Так, например, полярность молекулы воды указывает на ее угловую структуру, а отсутствие момента диполя СО2 — на ее линейность.

Ионная связь

Предельным случаем ковалентной полярной связи яв­ляется ионная связь. Если электроотрицательности атомов различаются очень сильно (например, атомов щелочных металлов и галогенов), то при их сближении валентные электроны одного атома полностью переходят на второй атом. В результате этого перехода оба атома становятся ионами и принимают электронную структуру ближайшего благородного газа. Например, при взаимо­действии атомов натрия и хлора, они превращаются в ионы Na+ и Сl-, между которыми возникает электроста­тическое притяжение. Ионная связь может быть описа­на в рамках методов ВС и МО, однако обычно ее рас­сматривают с помощью классических законов электро­статики.

Молекулы, в которых существует в чистом виде ион­ная связь, встречаются в парообразном состоянии ве­щества. Ионные кристаллы состоят из бесконечных рядов чередующихся положительных и отрицательных ионов, связанных электростатическими силами. При растворении ионных кристаллов или их плавлении в раствор или расплав переходят положительные и отрицательные ионы.

Следует отметить, что ионные связи обладают большой прочностью, поэтому для разрушения ионных кристаллов необходимо затратить большую энергию. Этим объясня­ется тот факт, что ионные соединения имеют высокие тем­пературы плавления.

В отличие от ковалентной связи ионная не обладает свойствами насыщаемости и направленности. Причина этого состоит в том, что электрическое поле, создаваемое ионами, имеет сферическую симметрию и действует оди­наково на все ионы. Поэтому количество ионов, окру­жающих данный ион, и их пространственное расположе­ние определяются только величинами зарядов ионов и их размерами.

Рассматривая ионную связь, необходимо иметь в виду, что при электроста­тическом взаимодействии между ионами происходит их деформация, называе­мая поляризацией. На рис. 2.1, а изображены два взаимодействующие электростатически нейтральных иона и сохраняющие идеально сферическую форму. На рис. 2.1, б показана поляризация ионов, которая при­водит к уменьшению эффективного расстояния между центрами положительных и отрицательных зарядов. Чем больше поляризация ионов, тем меньше степень ионности связи, т. е. тем больше ковалентный характер связи между ними. В кристаллах поляризация оказывается не­высокой, т. к. ионы симметрично окружены ионами про­тивоположного знака и ион подвергается одинаковому воздействию во всех направлениях.


Рис 2.1. Поляризация ионов

Металлическая связь

Особенностью всех металлов является их высокая электропроводность и теплопроводность. Эти свойства свидетельствуют о том, что валентные электроны способ­ны свободно перемещаться в пределах кристаллической решетки. Простейшая модель строения металла выглядит так: в узлах кристаллической решетки находятся поло­жительные ионы металла, которые прочно связаны элек­тронным газом. Валентные электроны одновременно на­ходятся на всех доступных орбиталях соседних атомов, осуществляя между ними связь. Такая нелокализованная связь называется металлической. Эта связь является до­статочно прочной, т. к. большинство металлов имеет вы­сокую температуру плавления. Указанная модель объяс­няет также свойственные металлам ковкость (способность расплющиваться в тонкие листы) и пластичность (способ­ность вытягиваться в проволоку). Эти свойства обуслов­лены тем, что подвижный электронный газ позволяет плоскостям, состоящим из положительных ионов, сколь­зить одна по другой.

Более строгую интерпретацию металлической связи позволяет дать метод молекулярных орбиталей. Напо­мним, что при взаимодействии двух атомных орбиталей образуются две молекулярные орбитали: связывающая и разрыхляющая. Происходит расщепление энергетическо­го уровня на два. Если взаимодействуют одновременно че­тыре атома металла, образуются четыре молекулярные ор­битали. При одновременном взаимодействии N частиц, со­держащихся в кристалле, образуется N молекулярных орбиталей, причем величина N может достигать огромных значений, сравнимых с числом Авогадро (6 • 1023). Моле­кулярные орбитали, образованные атомными орбиталями одного подуровня, находятся настолько близко, что прак­тически сливаются, образуя определенную энергетичес­кую зону.

Рассмотрим в качестве примера электронную структуру кристалла лития. Прежде всего, вспомним электронную конфигурацию молекулы Li2, образовавшуюся издвух изолированных атомов. При взаимо­действии N ls-орбиталей в кристалле лития образуется внутренняя энергетическая зона, полностью занятая электронами. Эти электроны не принимают участия в ме­таллической связи. Атом лития имеет один валентный электрон на 2s-орбитали. При взаимодействии N атомов лития 2s -орбитали, на которых находятся валентные электроны, образуют валентную зону. Нижняя часть ва­лентной зоны, образованная связывающими 2s -орбиталями, заполнена электронами, которые перемещаются по кристаллу хаотически. Достаточно близко расположен­ная верхняя часть, образованная разрыхляющими 2s-opбиталями, электронами не занята. При наложении даже незначительной разности потенциалов электроны возбуж­даются и переходят в верхнюю часть валентной зоны, где перемещаются в направлении поля, перенося электри­ческие заряды через весь кристалл. Верхнюю часть ва­лентной зоны называют зоной проводимости. Таким образом, у металлов валентная зона сливается с зоной проводимости. Это связано с тем, что число валентных электронов в атомах металлов относительно невелико и всегда недостаточно для заполнения всех валентных орбиталей.

В атомах неметаллов число валентных электронов ве­лико и валентная зона кристалла практически запол­нена электронами. Зона проводимости в кристаллах, со­держащих атомы или ионы неметаллов, образуется за счет орбиталей, имеющих намного большую энергию по сравнению с валентными орбиталями, т. е. принадле­жащих к следующему электронному уровню. В таких кристаллах между валентной зоной и зоной про­водимости находится запрещенная зона. Электроны не могут перемещаться вдоль кристалла, даже если к нему приложить высокое напря­жение — такие вещества на­зываются изоляторами или диэлектриками.

Промежуточное положе­ние между проводниками электрического тока и диэлектриками занимают полупроводники (кремний, германий,многие сложные вещества). Особенность полупроводников состоит в том, что у них сравнительно небольшая ширина запрещенной зоны. По­этому даже при незначительном нагревании электроны переходят в зону проводимости и вещество проводит электрический ток. В некоторых случаях переход элек­тронов в зону проводимости происходит при освещении — возникает фотопроводимость.

В диэлектриках ширина запрещенной зоны более 3 эВ, а в полупроводниках она составляет 0,1—3 эВ.

Под действием внешнего электрического поля на диэ­лектрик часть его электронов, получив достаточное ко­личество энергии, может переброситься из полностью за­полненной валентной зоны в зону проводимости и участ­вовать в переносе электричества. При этом в валентной зоне появится эквивалентное число так называемых дырок (вакантных мест), имеющих положительный заряд. Они также могут участвовать в переносе тока. Такая прово­димость называется электронно-дырочной.










Последнее изменение этой страницы: 2018-05-10; просмотров: 234.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...