Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод молекулярных орбиталей (ММО)




Метод валентных связей в большинстве случаев позво­ляет получать правдивую информацию о структуре и свойствах различных молекул и ионов. Однако имеется ряд экспериментальных фактов, которые не могут быть объяснены на основании этого метода. Так, не удается объяснить магнитные свойства ряда веществ (О2, В2 и др.) и существование молекул с нечетным числом электронов (NО и др.).

Эти и другие факты способствовали созданию иного квантово-механического метода описания ковалентной химической связи — МЕТОДА МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ (ММО). Основы ММО разработаны Робертом Малликеном и Фридрихом Хундом (1928-1930 гг.).

В методе МО подход к рассмотрению структуры моле­кулы близок к тому, которым мы пользовались при рас­смотрении строения атома. Метод основан на следующих положениях:

Молекула рассматривается как единая система ядер и электронов, а не как совокупность атомов, сохраняю­щих некоторую индивидуальность. Она образуется, если энергия такой системы ниже, чем энергия исходных атомов.

Подобно тому как электроны в атомах располагают­ся на атомных орбиталях (АО), общие электроны в моле­куле располагаются на молекулярных орбиталях (МО). Совокупность молекулярных орбиталей, занятых электронами, определяет электронную конфигурацию моле­кулы.

Существует несколько приближенных методов расчета молекулярных орбиталей. Наиболее простой называется методом линейной комбинации атомных орбиталей (МЛК АО). С точки зрения МЛК АО молекулярную орбиталь рассматривают как линейную комбинациюсоответствующих атомных орбиталеи в изолированных атомах, ядра которых входят в состав молекулы.

4. В образовании молекулярной орбитали участвуют только те АО, которые имеют близкую по величине энергию и приблизительно одинаковую симметрию относи­тельно оси связи.

5. При взаимодействии двух атомных орбиталеи в результате их линейной комбинации образуются две молекулярных орбитали с большей и меньшей энергиями, чемэнергия исходных АО. В результате сложения АО образуется МО с повышенной межъядерной электронной плотностью (меньшей энергией). Такую орбиталь называютсвязывающей. В случае вычитания АО образуется МО с пониженной межъядерной электронной плотностью
(большей энергией), называемая разрыхляющей. Сумма энергии образовавшихся МО в первом приближении равна сумме энергий АО, из которых они образова­лись.

6. Число всех образовавшихся МО равно сумме АО ис­ходных атомов. При этом число связывающих и разрыхляющих МО одинаково у гомоядерных молекул (содержащих одинаковые ядра) или равно числу участвующих в
образовании связи АО того атома, у которого их меньше.

7. Молекулярные орбитали по аналогии с атомными обозначаются греческими буквами s, p, d. Каждая МОхарактеризуется набором трех квантовых чисел. В соот­ветствии с принципом Паули на молекулярной орбитали, как и на атомной, не может быть больше двух электронов.

8. Все имеющиеся в молекуле электроны распределя­ются по МО с соблюдением тех же принципов и правил, что и при заполнении электронами орбиталеи в отдельных атомах (принцип наименьшей энергии, принцип Паули, правило Хунда). Электрон, находящийся на связывающей орбитали, увеличивает энергию связи, а электрон, находящийся на разрыхляющей орбитали, ее уменьшает.

9. Стабильность молекулы определяется разностью числа связывающих и разрыхляющих электронов. Если эта разность равна нулю, частица не образуется. Для того, чтобы можно было сопоставить число связей по МВС и
ММО, используют понятие порядок связи (кратность). По­рядок связи (N) равен разности между числом электронов, находящихся на связывающих орбиталях, и числомэлектронов на разрыхляющих орбиталях, деленной на 2.
Он может принимать целые или дробные положительныезначения.

Сравнение методов валентных связей и молекулярных орбиталей

Вначале отметим, что методы валентных связей и мо­лекулярных орбиталей являются приближенными. Каж­дый метод имеет свои преимущества и недостатки.

Метод МО позволяет описывать и прогнозировать свой­ства молекулы, зависящие от состояния в них отдельных электронов, такие как устойчивость и неустойчивость. Так, например, с точки зрения ММО, устойчив молеку­лярный ион Щ и, наоборот, неустойчивы Не2, Ве2. С по­зиций метода ВС это необъяснимо.

В рамках метода МО хорошо объясняются и прогнози­руются магнитные свойства молекул, также необъясни­мые с позиций МВС. Однако в рассмотренном простейшем варианте ММО не способен передавать насыщаемость ко-валентной связи (т. е. состав молекулы). Для МВС этот недостаток менее характерен. Расчет геометрической структуры и определение важнейших параметров моле­кулы с помощью ММО является трудной математической задачей, для решения которой необходимы мощные ЭВМ.

Из сказанного выше можно сделать вывод о том, что наиболее общим и последовательным методом для описа­ния строения молекул является метод молекулярных ор­биталей. Тем не менее, метод валентных связей дает воз­можность, основываясь на небольшом числе предположе­ний, связывать между собой в стройную систему важ­нейшие опытные данные, и применение этого метода во многих случаях более наглядно и вполне оправдано. Спор о том, какой из методов вернее, беспредметен. Правильнее считать, что они взаимно дополняют друг друга Сравнение методов валентных связей и молекулярных орбиталей

Вначале отметим, что методы валентных связей и мо­лекулярных орбиталей являются приближенными. Каж­дый метод имеет свои преимущества и недостатки.

Метод МО позволяет описывать и прогнозировать свой­ства молекулы, зависящие от состояния в них отдельных электронов, такие как устойчивость и неустойчивость. Так, например, с точки зрения ММО, устойчив молеку­лярный ион Щ и, наоборот, неустойчивы Не2, Ве2. С по­зиций метода ВС это необъяснимо.

В рамках метода МО хорошо объясняются и прогнози­руются магнитные свойства молекул, также необъясни­мые с позиций МВС. Однако в рассмотренном простейшем варианте ММО не способен передавать насыщаемость ко-валентной связи (т. е. состав молекулы). Для МВС этот недостаток менее характерен. Расчет геометрической структуры и определение важнейших параметров моле­кулы с помощью ММО является трудной математической задачей, для решения которой необходимы мощные ЭВМ.

Из сказанного выше можно сделать вывод о том, что наиболее общим и последовательным методом для описа­ния строения молекул является метод молекулярных ор­биталей. Тем не менее, метод валентных связей дает воз­можность, основываясь на небольшом числе предположе­ний, связывать между собой в стройную систему важ­нейшие опытные данные, и применение этого метода во многих случаях более наглядно и вполне оправдано. Спор о том, какой из методов вернее, беспредметен. Правильнее считать, что они взаимно дополняют друг друга. .





Свойства ковалентной связи

Ковалентная связь обладает рядом важных свойств. К их числу относятся: насыщаемость и направленность.

НАСЫЩАЕМОСТЬ — характерное свойство ковалент­ной связи. Она проявляется в способности атомов образо­вывать ограниченное число ковалентных связей. Это свя­зано с тем, что одна орбиталь атома может принимать участие в образовании только одной ковалентной хими­ческой связи. Данное свойство определяет состав молеку­лярных химических соединений. Так, при взаимодейст­вии атомов водорода образуется молекула Н2, а не Н3. С точки зрения МВС третий атом водорода не может присо­единиться, так как спин его электрона окажется парал­лельным спину одного из спаренных электронов в молеку­ле. Способность к образованию того или иного числа кова­лентных связей у атомов различных элементов ограни­чивается получением максимального числа неспаренных валентных электронов.

НАПРАВЛЕННОСТЬ — свойство ковалентной связи, определяющее геометрическую структуру молекулы. Причина направленности связи заключается в том, что перекрывание электронных орбиталей возможно только при их определенной взаимной ориентации, обеспечиваю­щей наибольшую электронную плотность в области их перекрывания. В этом случае образуется наиболее проч­ная химическая связь.










Последнее изменение этой страницы: 2018-05-10; просмотров: 197.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...