Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Регуляция углеводного обмена.




1. Регуляция обмена углеводов нервной системой.

Французский исследователь К. Бернар, сделав укол в дно 4-го мозгового желудочка, заметил, что у животных усиливается распад гликогена в печени и повышается содержание глюкозы в крови. При возбуждении НС (условно-рефлекторном или с помощью медикаментов) усиливается пищеварение и всасывание углеводов, а также окисление ПВК и лактата. Ярким доказательством нейрогуморальной регуляции обмена углеводов является эмоциональная гипергликемия (повышение содержания сахара в крови) и эмоциональная глюкозурия (повышение содержания сахара в моче).

2. Влияние гормонов (в основном глюкагон и инсулин) на обмен углеводов.

Инсулин – это единственный гормон снижающий уровень сахара в крови. Действие проявляется в мышечной ткани, жировой ткани, печени и связанно с проницаемостью клеточной мембраны для глюкозы. Инсулин индуцирует ключевые ферменты для гликолиза. При недостатке инсулина возникает заболевание сахарный диабет (гипергликемия), глюкозурия (снижение гликогена в печени).

Адреналин (гормон мозгового слоя надпочечников) и глюкагон (α клетки поджелудочной железы) усиливают распад гликогена в печени, следовательно, возникает гипергликемия, одновременно подавляется синтез гликогена.

АКТГ и СТГ (гормоны передней доли гипофиза) действуют опосредованно.

АКТГ стимулирует деятельность коры надпочечников, так как усиливается выработка адреналина (антагониста инсулина).

СТГ антагонист и синергист инсулина так как:

а) тормозит метаболизм глюкозы на периферии

б) усиливает синтез инсулина в поджелудочной железе

3. Кроме перечисленных, существуют механизмы клеточной регуляции углеводного обмена. Главная роль отводится печени. Синтезируемый гликоген откладывается в печени (до 150 г).

    При повышении сахара в крови печень фиксирует его в виде гликогена, при снижении сахара мобилизует гликоген и превращает его в глюкозу. Одновременно при этом в печени усиливается глюконеогенез. Печень регулирует уровень глюкозы в крови через фермент глюкокиназу (гексокиназу IV). При гипергликемии активность фермента усиливается, при гипогликемии – снижается.

 

Патология углеводного обмена.

    В норме содержание глюкозы в крови 3,3-4,0 ммоль/л. Повышение в крови концентрации глюкозы называется гипергликемия (9-10 ммоль/л), снижение гипогликемия. Если гипогликемия достигает уровня 1,5 ммоль/л возникают судороги, а если еще ниже смерть!

 

Причины понижения и повышения уровня глюкозы в крови.

Распад гликогена

глюкоза

синтез гликоген             (печень, скелетные мышцы
Всасывание в кишечнике                СО2 + Н2О
Глюконеогенез                 Синтез ТАГ           (из глк в жировой ткани)

 

Углеводный обмен может быть нарушен вследствие многих причин.

1. Ослабление всасывания глюкозы в тонкой кишке (воспаление слизистой кишечника, удаление части кишечника, отравление моноуксусной кислотой и другими ядами).

2. Ряд наследственных заболеваний, при которых отсутствуют некоторые ферменты, например сахараза, мальтаза. Человек в таких случаях не переносит сахар, При его употреблении наступает диарея, потеря веса, в тяжелых случаях смерть. У аборигенов Австралии 100%.

Галактоземия - нарушения метаболизма галактозы, обусловленное наследствен­ным дефектом любого из трёх ферментов (галактозо-1-фосфатуридилтрансферазы (ГАЛТ)), катализирующих превращение галактозы в глюкозу.

Галактоземия имеет несколько форм, про­является рано, и особенно опасна для детей, так как материнское молоко, содержит лактозу. Ранние симптомы дефекта ГАЛТ: рвота, диарея, дегидратация, уменьше­ние массы тела, желтуха, развитие катаракты, которая на­блюдается уже через несколько дней после рож­дения. Отмечают нарушения в клетках полушарий го­ловного мозга и мозжечка, в тяжёлых случаях — отёк мозга, задержку умственного развития, воз­можен летальный исход.

Некоторые дефекты в строении ГАЛТ при­водят лишь к частичной потере активности фер­мента. Поскольку в норме ГАЛТ присутствует в организме в избытке, то снижение его актив­ности до 50%, а иногда и ниже может клини­чески не проявляться.

Лечение заключается в удалении галактозы из рациона.

Эссенциальная фруктозурия – врожденные аномалии обмена фруктозы из-за недостатка фермента фруктокиназы, как следствие не образуется фруктоза-1-фосфат, не происходит его дальнейшее преобразование и включение в гликолиз. Она проявляется, когда в рацион добавляют фрукты, соки, сахарозу. После приёма пищи, содержащей фрук­тозу, возникает рвота, боли в животе, диарея, гипогли­кемия и даже кома и судороги. У маленьких детей и подростков развиваются хрони­ческие нарушения функций печени и почек. Болезнь сопро­вождается накоплением фруктозо-1-фосфата, который ингибирует активность фосфоглюкомутазы, поэтому происходит торможение распада гликогена и развивается гипогликемия. Как следствие, ускоряется мо­билизация липидов, окисление жирных кис­лот и синтез кетоновых тел. Повышение кетоновых тел может привести к метаболическому ацидозу.

Гликогенозы – вследствие нарушения генетического аппарата синтезируется гликоген аномальной структуры, который не может расщепляться ферментами организма человека (болезнь Форбса, болезнь Андерсена). Гликоген накапливается в печени и других органах, что сопровождается тяжелыми осложнениями

Агликогенозы (болезнь Гирке). Возникает вследствие отсутствия некоторых ферментов (фосфорилазы), расщепляющих гликоген. Результатом торможения гликогенолиза и гликолиза является снижение синтеза АТФ. Для пополнения внутриклеточного фосфата ускоряется распад адениловых нуклеотидов. Продукты распада этих нуклеотидов включаются в катаболизм, проходя стадии образования гипоксантина, ксантина и, наконец, мочевой кис­лоты. Повышение количества мочевой кислоты и снижение экскреции уратов в условиях мета­болического ацидоза проявляются в виде гиперурикемии. Следствием гиперурикемии может быть подагра даже в молодом возрасте. Происходит увеличение печени, судороги, задержка роста. В крови отсутствует глюкоза.

 

ТЕМА: ЛИПИДЫ I

Цель:Познакомить со строением, классификацией и функцией липидов.

 

ПЛАН ЛЕКЦИИ

1. Липиды. Определение и классификация (физиологическая, физико-химическая, структурная).

2. Функции липидов.

3. Жирные кислоты, классификация, структура.

4. Нейтральные жиры.Воски.Стериды. Фосфолипиды.

5. Желчные кислоты, классификация, функции.

6. Всасывание продуктов переваривания липидов.

 

Определение и классификация липидов

Липиды – сложные органические вещества, характерные для живых организмов, нерастворимые в воде, но растворимые в органических растворителях и друг в друге. В химическом отношении липиды это сборная группа органических соединений. Большинство из них это сложные эфиры многоатомных спиртов и высших жирных кислот. В виде ацильного остатка в липидах может выступать Фн.

    Существует несколько классификаций липидов:

I физиологическая

а) резервные липиды или ацилглицерины депонируются в больших количествах в затем расходуются для энергетических целей организма.

б) структурные липиды – все остальные липиды, участвующие в построении клеточной мембраны.

II физико-химическая

а) нейтральные или неполярные жиры,т.е. липиды не имеющие заряда – ТАГ (триацилглицерины).

б) полярные, т.е. несущие заряд (фосфолипиды, ж.к.)

III структурная – наиболее сложная. В соответствии с ней липиды подразделяются на следующие группы.

                                                               Липиды

Простые (не>2-х компонентов) Сложные (>2-х компонентов)
1. Глицериды (жирные кислоты, нейтральные                          жиры, ТАГ) 1. Гликолипиды.
2. Воски 2. Фосфолипипы.
  3. Стероиды (содержат нелипидный компонент)

Функции липидов

1. Структурная. Липиды являются одним из основных компонентов биологических мембран.

2. Энергетическая. При расщеплении 1г. жира выделяется ≈39 кДж энергии, т.е. в 2 раза больше, чем при распаде 1 г. углеводов.

3. Запасная. В виде ацилглицеридов депонируется метаболическое топливо.

4. Защитная.Жировая прослойка предохраняет тело и органы животных от механических повреждений.

5. Регуляторная. Например простагаландины повышая секрецию цАМФ стимулируют образование и секрецию гормонов.

6. Липиды, важные компоненты нервной клетки, участвуют в передаче нервного импульса, создании межклеточных контактов.

Жирные кислоты (ЖК) – это алифатические монокарбоновые кислоты. Подразделяются на:

- насыщенные (нет двойных связей)

- мононенасыщенные ( одна двойная связь)

- полиненасыщенные ( две и более двойных связей)

Все они содержат четное число углеродных атомов, главным образом от 12 до 24. Среди них преобладают кислоты, имеющие С16 и С18 (пальмитиновая, стеариновая, олеиновая и линолевая). Растворимость ЖК возрастает с увеличением числа углеродных атомов. Ненасыщенные жирные кислоты человека и животных, участвующие в построении липидов, обычно содержат двойную связь между 9-м и 10-м атомамиуглеводородов.

В полиненасыщенных ЖК расположение двойных связей может быть:

кумулированное – С = С = С –

сопряженное   – С = С – С = С –

изолированное – С = С – С – С = С –

Нумерацию углеродных атомов в жирно-кислотной цепи начинают с атома углерода карбоксильной группы. Примерно 3/4 всех жирных кислот являются непредельными (ненасыщенными), т.е. содержат двойные связи.

В соответствии с систематической номенклатурой количество и положение двойных связей в ненасыщенных жирных кислотах часто обозначают с помощью цифровых символов.

например, олеиновую кислоту как 18:1 (9) линолевую кислоту как 18:2 (9,12)

 

 


число углеродных атомов, число двойных связей, номера ближайших к карбоксилу                                                                                           углеродных атомов, вовлеченных                                                                                               в образование двойной связи.

 

ЖК по своему стрению являются амфипатическими, т.е. имеют полярную «голову» СОО- (обращена к воде) и неполярный «хвост» (углеводородная цепь).

Натриевые и калиевые соли ЖК называют мылами. В водных растворах они существуют в виде мицелл (суспензий). Структура мицелл такова, что их гидрофобное ядро (жирные кислоты, моноглицериды и др.) оказывается окруженным снаружи гидрофильной оболочкой из желчных кислот и фосфолипидов. Мицеллы примерно в 100 раз меньше самых мелких эмульгированных жировых капель.

 

Нейтральные жиры. В соответствии с рекомендацией Международной номенклатурной комиссии их называют ацилглицеринами (а не глицеридами, как раньше)

Ацилглицерины (нейтральные жиры) представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Если жирными кислотами этерифицированы все три гидроксильные группы глицерина, то такое соединение называют триглицеридом (триацилглицерол, ТАГ), если две – диглицеридом (диацилглицерол, ДАГ) и если этерифицирована одна группа – моноглицеридом (моноацилглицерол, МАГ):

Если ацильные радикалы R1, R2 и R3 одинаковы, то ТАГ называют простыми (трипальмитин), если различные, то смешанными (пальмитостеаролеин).

Жирные кислоты, входящие в состав триглицеридов, определяют их физико-химические свойства. Так, температура плавления триглицеридов повышается с увеличением числа и длины остатков насыщенных жирных кислот. Напротив, чем выше содержание ненасыщенных жирных кислот, или кислот с короткой цепью, тем ниже точка плавления.

Животные жиры (сало) обычно содержат значительное количество насыщенных жирных кислот (пальмитиновой, стеариновой и др.) благодаря чему при комнатной температуре они твердые.

Жиры, в состав которых входит много ненасыщенных кислот, при обычной температуре жидкие и называются маслами. Так, в конопляном масле 95% всех жирных кислот приходится на долю олеиновой, линолевой и линоленовой кислот и только 5% – на долю стеариновой и пальмитиновой кислот. В жире человека, плавящемся при температуре 15°С (при температуре тела он жидкий), содержится 70% олеиновой кислоты.

 

Фосфолипиды это сложные эфиры многоатомных спиртов глицерина или сфингозина с высшими жирными кислотами и фосфорной кислотой. В зависимости от того, какой многоатомный спирт участвует в образовании фосфолипида (глицерин или сфингозин), последние делят на: 1. глицерофосфолипиды

                                            2. сфингофосфолипиды.

    1. Глицерофосфолипиды - производные фосфатидной кислоты. В их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения. 

R1и R2– радикалы высших жирных кислот, a R3–радикал азотистого соединения или инозитол.

а) в зависимости от характера R3 глицерофосфолипиды подразделяют на

- фосфатидилхолины (лецитины),

- фосфатидилэтаноламины (кефалины)

- фосфатидилсерины

- фосфатидилинозитолы

б) ацетальфосфатиды – R1 – представлен не жирной кислотой, а альдегидом жирной кислоты, называются плазмологены.

в) в структуре имеются 3 молекулы глицерина

 

Фосфолипиды являются главными липидными компонентами мембран клеток, в животном организме найдены в мозге, печени и легких. При гидролизе некоторых фосфолипидов под действием особых ферментовсодержащихся, например, в яде кобры, отщепляетя R1 и образуется соединение, обладающее сильным гемолитическим действием.

 

    2. Сфинголипиды находятся в мембранах животных и растительных клеток. Главный представитель сфингомиелин. Особенно богата ими нервная ткань. Вместо глицерина сфинголипидысодержат двухатомный ненасыщенный спирт сфингозин.

 

Гликолипиды – это сложные липиды, содержащие нелипидный компонент – остаток сахара.

а) Цереброзиды – главные сфинголипиды мозга и других нервных тканей, содержат D-галактозу.

б) Ганглиозиды (содержат сложный олигосахарид) в больших количествах находятся в нервной ткани, в сером веществе мозга.

Воска – сложные эфиры высших жирных кислот и высших одноатомных или двухатомных спиртов содержащих ≈ 50% различных примесей.

Природные воска (например, пчелиный воск, спермацет, ланолин) обычно содержат, кроме указанных сложных эфиров, некоторое количество свободных жирных кислот, спиртов и углеводородов.

 

Стериды (стероиды) – сложные эфиры циклических спиртов (стеролов или стеринов) и высших жирных кислот. К стероидам относятся:

                                  1. гормоны коркового вещества надпочечников,

2. желчные кислоты,

3. витамины группы D,

4.сердечные гликозиды и др.

 

Все стероиды в своей структуре имеют ядро (стеран), образованное гидрированным фенантреном (кольца А, В и С) и циклопентаном (кольцо D):

В организме человека важное место среди стероидов занимают стерины (стеролы), т.е. стероидные спирты. Главным представителем стеринов является холестерин (холестерол).

 

Каждая клетка в организме млекопитающих содержит холестерин, который обеспечивает избирательную проницаемость клеточной мембраны и оказывает регулирующее влияние на состояние мембраны и на активность связанных с ней ферментов. Холестерин – источник образования желчных кислот, стероидных гормонов (половых и кортикоидных), а продукт его окисления –7-дегидрохолестерин, под действием УФ-лучей в коже превращается в витамин D3.

 

Желчные кислоты - конечный продукт метаболизма холестерина.

Желчные кислоты являются производными холановой кислоты:

В желчи человека в основном содержатся: 1. холевая (3,7,12-триоксихолановая),

                                                   2. дезоксихолевая (3,12-диоксихолановая)

и ее конъюгаты: 1. с глицином (гликохолевая)

                  2. с таурином (таурохолевая)


Функции желчных кислот

1) эмульгирующая

2) активирование липолитических ферментов

3) транспортная, так как, образуя комплекс с жирной кислотойпомогают их всасыванию в кишечнике.

Соли желчных кислот являются амфифильными (голова имеет «-» заряд, хвост 0 заряд), резко уменьшают поверхностное натяжение на поверхности раздела жир/вода, благодаря чему они не только облегчают эмульгирование, но и стабилизируют уже образовавшуюся эмульсию.

В просвет кишечника поджелудочной железой выделяется зимоген – пролипаза.

пролипаза(неактивная)
↓ + желчные кислоты
липаза панкреатическая (активная)

Активная липаза в присутствии желчных кислот и специфического белка колипазы, присоединяется к ТАГ и катализирует гидролитическое отщепление 1-го или 2-го крайних жирнокислых остатков. Кишечная липаза действует на ТАГ (на ДАГ, МАГ нет).

Т.о. основные продукты расшепления нейтральных жиров в кишечнике это глицерин, жирная кислота и моноглицериды.

Гидролиз сложных липидов происходит под действием специфических липаз на составные части. Тонкоэмульгированные жиры частично могут всасываться через стенки кишечника без предварительного гидролиза. Основная часть жира всасывается лишь после расщепления его панкреатической липазой на жирные кислоты, моноглицериды и глицерин.  










Последнее изменение этой страницы: 2018-05-10; просмотров: 199.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...