Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Термопреобразователях сопротивления




 Измерение температуры термопреобразователями сопротивления основано на свойстве металлов и полупроводников изменять свое электрическое сопротивление с изменением температуры. Если известна зависимость между электрическим сопротивлением Rt термопреобразователя сопротивления и его температурой t [т. е. Rt=f(t) - градуировочная характеристика], то, измерив Rt, можно определить значение температуры среды, в которую он погружен. (Градуировочная характеристика — зависимость между значениями величин X на входе и У на выходе средств измерений, полученная экспериментально:У = f(X). Градуировочная характеристика может быть выражена в виде формулы, графика или таблицы. Она связывает конструктивные параметры прибора с величинами X и У.)

 Термопреобразователи позволяют надежно измерять темпера­туру в пределах от —260 до +1100°С.

 К металлическим проводникам термопреобразователей сопротивления предъявляется ряд требований, основными из которых являются стабильность градуировочной характеристики, а также ее воспроизводимость, обеспечивающая взаимозаменяемость изготовляемых термопреобразователей сопротивления. К числу не основных, но желательных требований относятся: линейность функции Rt=f(t), по возможности высокое значение температурного коэффициента электрического сопротивления α= , большое удельное сопротивление и невысокая стоимость материала.

Исследованиями установлено, что чем чище металл, тем в большей степени он отвечает указанным основным требованиям и тем больше значения отношения R100/R0 и α (где R0 и R100электрические сопротивления металла при 0 и 100 °С соответст­венно). Поэтому степень чистоты металла, а также наличие в нем механических напряжений, принято характеризовать значениями R100/R0 и α. При снятии механических напряжений в металле пу­тем его отжига указанные характеристики достигают своих пре­дельных значений для данного металла.

Для изготов­ления стандартизованных термопреобразователей сопротивления в настоящее время применяют платину и медь.

Платина является наилучшим материалом для термопреобра­зователей сопротивления, так как легко получается в чистом виде, обладает хорошей воспроизводимостью, химически инертна в окислительной среде при высоких температурах, имеет доста­точно большой температурный коэффициент сопротивления, рав­ный 3,94 10-3 °С-1, и высокое удельное сопротивление 0,110-6 Ом*м. Платиновые преобразователи сопротивления используются для измерения температуры от —260 до +1100°С, при этом для диапазона температур от —260 до +750°С используются плати-новые проволоки диаметром 0,05—0,1 мм, а для измерения тем­ператур до 1100°С, в силу распыления платины при этих темпе­ратурах, диаметр проволоки составляет около 0,5 мм. Значение отношения R100/R0 для применяемых платиновых проволок состав­ляет 1,3850—1,3910.

Платиновые термопреобразователи сопротивления являются наиболее точными первичными преобразователями в диапазоне температур, где они могут быть использованы. Платиновые термопреобразователи сопротивления используются в качестве рабочих, образцовых и эталонных термометров. С помощью последних осуществляется воспроизведение международной шкалы температур в диапазоне от —182,97 до 630,5 °С.

Недостатком платины является нелинейность функции Rt=f(t) и, кроме того, платина — очень дорогой металл.

Медь—одиниз недорогостоящих металлов, легко получаемых в чистом виде. Медные термопреобразователи сопротивлений предназначены для измерения температуры в диапазоне от —50 до +200°С. При более высоких температурах медь активно окис­ляется и потому не используется. Никель и железо благодаря своим относительно высоким тем­пературным коэффициентам электрического сопротивления и сравнительно большим сопротивлениям хотя и используются для измерения температуры в диапазоне от —50 до +250°С, однако широко не применяются Это связано с тем, что градуировочная характеристика их нелинейна, а главное, не стабильна и не вос­производима, и потому термопреобразователи сопротивления, из­готовленные из этих металлов, не стандартизованы.

Конструкция технических термометров с металлическим тер­мопреобразователем сопротивления показана на рис. 2.1.

 

Рисунок 2.1 Конструкция термопреобразователя температуры

 

Тонкая проволока или лента 1 из платины или меди наматы­вается бифилярно (двойная намотка) на каркас 2 из керамики, слюды, кварца, стек­ла или пластмассы. Бифилярная намотка необходима для исклю­чения индуктивного сопротивления. После намотки обычно неизо­лированной платиновой проволоки каркас вместе с проволокой покрывают слюдой. Длина намотанной части каркаса с платино­вой проволокой 50—100 мм, а с медной — 40 мм. Каркас для зашиты от повреждений помещают в тонкостенную алюминиевую гильзу 3, а для улучшения теплопередачи от измеряемой среды к намотанной части каркаса между последней и защитной гиль­зой 3 устанавливаются упругие металличе­ские пластинки 4 или массивный металличе­ский вкладыш. Помимо наматываемого про­волокой каркаса используются двух- и че­тырехканальные керамические каркасы. В каналах размещают проволочные плати­новые спирали, которые фиксируются в ка­налах каркаса с помощью термоцемента на основе оксида алюминия и кремния.

При изготовлении медных термопреобразователей сопротивления применяют безын­дукционную бескаркасную намотку. В качестве материала используют изолированную медную проволоку диаметром 0,08 мм, покрытую фторопластовой пленкой. Гильзу 3 с ее содержимым помещают во внешний, обычно стальной, замкнутый чехол 5, который устанавливается на объекте измерения с помощью штуцера 6. На внешней стороне чехла располагается соединительная головка 8, в которой находится изоляционная колодка 7 с винтами для крепления выводных проводов, идущих от каркаса через изоля­ционные бусы 9. Термопреобразователи сопротивления по внешнему виду и размерам аналогичны термоэлектрическим преобразователям.

Полупроводниковые термопреобразователи сопротивления применяются для измерения температуры от —100 до 300 °С. В качестве материалов для них используются различные полупроводни­ковые вещества — оксиды магния, кобальта, марганца, титана, меди, кристаллы германия.

Основным преимуществом полупроводников являетсяих боль­шой отрицательный температурный коэффициент сопротивления. При повышении температуры полупроводников на один градус их сопротивление уменьшается на 3—5%, что делает их очень чувст­вительным к изменению температуры. Кроме того, они обладают значительным удельным сопротивлением и потому даже при очень малых размерах обладают значительным номинальным электри­ческим сопротивлением (от нескольких до сотен килоом). что позволяет не учитывать сопротивления соединительных проводов и элементов измерительной схемы. Следствием же малых разме­ров полупроводниковых термопреобразователей сопротивления является возможность безынерционного измерения температуры.

Чувствительные элементы из полупроводников выполняются в виде цилиндров, шайб, бусинок малых размеров.

В силу указанных недостатков полупроводниковые термопре­образователи сопротивления редко используются для измерения температуры. Они находят широкое применение в системах тем­пературной сигнализации, вследствие присущего им релейного эффекта — скачкообразного изменения сопротивления при дости­жении определенной температуры. Кроме того, полупроводнико­вые термопреобразователи сопротивления используются в каче­стве чувствительных элементов в различных газоаналитических автоматических приборах.

 










Последнее изменение этой страницы: 2018-06-01; просмотров: 196.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...