Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

При определении СОЭ выделяют три фазы




· 1-ая: АГРЕГАЦИЯ – первичное формирование столбиков, начало образования осадка.

· 2-ая: СЕДИМЕНТАЦИЯ – быстрое появление эритроцит-плазматической границы, завершение образования осадка.

· 3-я: УПЛОТНЕНИЕ – завершение агрегации эритроцитов и формирования столбиков на дне пробирки.

· Показатели агрегации и седиментации зависят от нестабильности крови, которая основывается на взаимном эффекте между поверхностью мембраны эритроцитов и некоторыми белками плазмы, называемыми «агломеринами».

Выдвинуто 2 теории, объясняющие повышение СОЭ:

· 1. Электрохимическая. Она связывает оседание эритроцитов с нейтрализацией их отрицательного заряда агломеринами.

· 2. Теория лабильности коллоидов. Объясняет агрегацию и оседание эритроцитов накоплением в крови агломеринов и фибриногена. Они, являются неустойчивыми коллоидами, поэтому осаждаются на эритроцитах. Клейкость их оболочки увеличивается и они склеиваются в агрегаты.

Реакция среды (рН) -в норме 7,36 - 7,42.Жизнь возможна, если рН от 7 до 7,8.

Состояние, при котором происходит накопление в крови и тканях кислых эквивалентов, называется ацидоз (закисление),рН крови при этом уменьшается (меньше 7,36). Ацидоз может быть:

· газовым- при накоплении СО2 в крови (СО2+ Н2О<-> Н2СО3 - накопление кислых эквивалентов);

· метаболическим(накопление кислых метаболитов, например при диабетической коме накопление ацетоуксусной и гамма-аминомаслной кислот).

Ацидоз приводит к торможению ЦНС, коме и смерти.

Накопление щелочных эквивалентов называется алкалоз (защелачивание)-увеличение рН больше 7,42.

Алкалозтакже может быть газовым,при гипервентиляции легких (если выведено слишком большое количество СО2), метаболическим- при накоплении щелочных эквивалентов и чрезмерном выведении кислых (неукротимая рвота, поносы, отравления и др.) Алкалоз приводит к перевозбуждению ЦНС, судорогам мышц и смерти.

Поддержание рН достигается за счет буферных систем крови, которые могут связывать гидроксильные (ОН-) и водородные ионы (Н+) и тем удерживать реакцию крови постоянной. Способность буферных систем противодействовать сдвигу рН объясняется тем, что при взаимодействии их с Н+ или ОН-, образуются соединения, обладающие слабо выраженным кислотным или основным характером.

Основные буферные системы организма:

· белковая буферная система (кислые и щелочные белки);

· гемоглобиновая (гемоглобин, оксигемоглобин);

· бикарбонатная (бикарбонаты, угольная кислота);

· фосфатная (первичные и вторичные фосфаты).

· Буферная система гемоглобина самая мощная. На ее долю приходится 75 % буфер­ной емкости крови. Эта система состоит из восстановленного гемоглобина (ННв) и его калиевой соли (КНв). Буферные свойства ННв обусловлены тем, что он, будучи более слабой кислотой, чем НгСОз, отдает ей ион К4', а сам, присоединяя ионы Н4', становится очень слабо диссоциирующей кислотой. В тканях система гемоглобина крови выполняет функции щелочи, предотвращая закисление крови вследствие поступления в нее СОг и Нойонов. В легких гемоглобин крови ведет себя как кислота, предотвращая защелачи-ванне крови после выделения из нее углекислоты.

· Карбонатная буферная система (НаСОз+МаНСОз) по своей мощности занимает второе место после системы гемоглобина. Она функционирует следующим образом:

NaHCOa диссоциирует на ионы Na^ и НСОз~. При поступлении в кровь более сильной кислоты, чем угольная, происходит реакция обмена ионами Na"1" с образованием слабо-диссоциирующей и легкорастворимой НаСОз. Таким образом предотвращается повыше­ние концентрации Н4 -ионов в крови. Увеличение в крови содержания угольной кислоты приводит к тому, что ее ангидрит — углекислый газ — выделяется легкими. В результате этих процессов поступление кислоты в кровь приводит лишь к небольшому временному повышению содержания нейтральной соли без сдвига рН. В случае поступления в кровь щелочи она реагирует с угольной кислотой, образуя бикарбонат NaHCOs и воду. Возни­кающий при этом дефицит угольной кислоты немедленно компенсируется уменьшением выделения СС>2 легкими.

Хотя в исследованиях in vitro удельный вес бикарбонатного буфера по сравнению с гемоглобином слабее, в действительности.же его роль в организме весьма ощутима. Это обусловлено тем, что связанное с действием этой буферной системы усиленное выве­дение С02 легкими и выделение NaCI мочой — весьма быстрые процессы, почти мгно­венно восстанавливающие рН крови.

· Фосфатная буферная система образована дигидрофосфатом (NaHsPCli) и гидро­фосфатом (Na2HPC>4) натрия. Первое соединение слабо диссоциирует и ведет себя как слабая кислота. Второе соединение обладает щелочными свойствами. При введении в кровь более сильной кислоты она реагирует с МаНгР04, образуя нейтральную соль и увеличивая количество малодиссоциирующего дигидрофосфата натрия. В случае вве­дения в кровь сильной щелочи она реагирует с дигидрофосфатом натрия, образуя слабо щелочной гидрофосфат натрия. рН крови изменяется при этом незначительно. В обоих случаях избыток дигидрофосфата или гидрофосфата натрия выделяется с мочой.

· Белки плазмы играют роль буферной системы благодаря своим амфотерным свойст­вам. В кислой среде они ведут себя как'щелочи, связывая кислоты. В щелочной среде белки реагируют как кислоты, связывающие щелочи.

Эритроциты

Эритроциты человека содержатся в крови в количестве 4-5*1012 /л. Они представляют собой безъядерные клетки, заполненные гемоглобином. В безъядерных клетках обменные процессы протекают медленно и не требуют больших затрат кислорода на собственные нужды, что позволяет сохранить его для работающих клеток организма.

Основной функцией эритроцитов является перенос кислорода в составе оксигемоглобина от альвеол легких к тканям и частично углекислого газа в составе карбгемоглобина от тканей к легким. Помимо этого в эритроцитах осуществляется синтез угольной кислоты из поступающего углекислого газа и воды, в котором роль катализатора выполняет карбоангидраза. Ион HС03 образующийся при диссоциации угольной кислоты, переходит в плазму, где соединяется с ионами Nа", образуя карбонатный буфер. В составе бикарбонатов плазмы транспортируется примерно 75% углекислого газа, образующегося в клетках тканей. В этом заключается дыхательная функция эритроцитов.

На мембране эритроцитов находятся молекулы белковой природы, что позволяет им адсорбировать некоторые биологически активные вещества (простагландины, лейкотриены, цитокины и др.), гормоны, аминокислоты, пептиды, жиры, холестерин, углеводы, ферменты (холипэстераза, угольная ангидраза, фосфатаза), микроэлементы и в таком виде транспортировать их. В эритроцитах содержится ряд компонентов свертывающей и прогивосвертывающей систем крови. Эритроциты являются носителями многих ферментов (холинэстеразы, угольной апгидразы, фосфатазы). В эритроцитах содержится ряд витаминов (В,, В2, В6, аскорбиновая кислота).

Эритроциты имеют форму двояковогнутого диска. В среднем их диаметр около 7,5 мкм, а толщина на периферии 2,5 мкм. Благодаря такой форме увеличивается поверхность эритроцитов для диффузии газов. Кроме того, возрастает их пластичность. За счет высокой пластичности, они деформируются и легко проходят по капиллярам. У старых и патологических эритроцитов пластичность низкая. Поэтому они задерживаются в капиллярах ретикулярной ткани селезенки и разрушаются там. Мембрана эритроцитов и отсутствие ядра обеспечивают их главную функцию – перенос кислорода и участие в переносе углекислого газа.

Мембрана эритроцитов непроницаема для катионов, кроме калия, а ее проницаемость для анионов хлора, гидрокарбонат анионов и гидроксил анионов в миллион раз больше. Кроме того, она хорошо пропускает молекулы кислорода и углекислого газа. В мембране содержится до 52% белка. В частности, гликопротеины определяют групповую принадлежность крови и обеспечивают ее отрицательный заряд. В нее встроена Na+-K+-АТФ-аза, удаляющая из цитоплазмы натрий и закачивающая ионы калия. Основную массу эритроцитов составляет хемопротеин гемоглобин. Кроме того в цитоплазме содержатся ферменты карбоангидраза, фосфатазы, холинестераза и другие ферменты.

Функции эритроцитов:

1. перенос кислорода от легких к тканям;

2. участие в транспорте СО2 от тканей к легким;

3. транспорт воды от тканей к легким, где она выделяется в виде пара;

4. участвуют в свертывании крови, выделяя эритроцитарные факторы свертывания;

5. переносят аминокислоты на своей поверхности;

6. участвуют в регуляции вязкости крови вследствие пластичности. В результате их способности к деформации, вязкость крови в мелких сосудах меньше, чем крупных.

В одном микролитре крови мужчин содержится 4,5-5,0 млн. эритроцитов (4,5-5,0·1012 /л). Женщин 3,7-4,7 млн. (3,7-4,7·1012 л).

Гемолиз

Гемолиз– это разрушение мембраны эритроцитов и выход гемоглобина в плазму. В результате кровь становится прозрачной. При старении эритроциты становятся сферичнее. Различают следующие виды гемолиза:

А. По месту возникновения:

1. эндогенный, т.е. в организме;

2. экзогенный, вне его. Например во флаконе с кровью, аппарате искусственного кровообращения.

Б. По характеру:

1. физиологический. Он обеспечивает разрушение старых и патологических форм эритроцитов. Имеется два механизма. Внутриклеточный гемолиз происходит в макрофагах селезенки, костного мозга, клетках печени. Внутрисосудистый – в мелких сосудах, из которых гемоглобин с помощью белка плазмы гаптоглобина переносится к клеткам печени. Там гем гемоглобина превращается в билирубин. В сутки разрушается около 6-7 г гемоглобина;

2. патологический.

В. По механизму возникновения:

1. химический. Возникает при воздействии на эритроциты веществ, растворяющих липиды мембраны. Это спирты, эфир, хлороформ, щелочи кислоты и т.д. В частности, при отравлении большой дозой уксусной кислоты возникает выраженный гемолиз;

2. температурный. При низких температурах в эритроцитах образуются кристаллики льда, разрывающие их оболочку;

3. механический. Наблюдается при механических разрывах мембраны. Например, при встряхивании флакона с кровью или ее перекачивания аппаратом искусственного кровообращения;

4. биологический. Происходит при действии биологических факторов. Это гемолитические яды бактерий, насекомых, змей. В результате переливания несовместимой крови;

5. осмотический. Возникает в том случае, если эритроциты попали в среду с осмотическим давлением ниже, чем у крови. Вода входит в эритроциты, они набухают и лопаются. Концентрация хлорида натрия, при которой происходит гемолиз 50% всех эритроцитов, является мерой их осмотической стойкости. Ее определяют в клинике для диагностики заболеваний печени, анемий. Осмотическая стойкость должна быть не ниже 0,46% NaCl. Осмотический гемолиз возникает в гипотонической среде, при этом кровь становится прозрачной ("лаковая кровь"). Мерой осмотической стойкости (резистентности) эритроцитов является концентрация раствора хлористого натрия, при которой начинается гемолиз. У человека границы стойкости эритроцитов находятся в пределах от 0,46% до 0,48% (в растворе такой концентрации разрушаются все эритроциты). При некоторых заболеваниях осмотическая стойкость эритроцитов снижается, т. е. гемолиз начинается при более высоких концентрациях раствора хлористого натрия.

При помещении эритроцитов в среду с большим, чем у крови, осмотическим давлением, происходит плазмолиз. Это сморщивание эритроцитов. Его используют для подсчета эритроцитов.

Эритропоэз.

Образование эритроцитов эритропоэз - осуществляется в красном костном мозге, который находится в плоских костях и метафизах трубчатых костей.

Эритроциты вместе с кроветворной тканью носят название красного ростка крови или эритрона. В сутки образуется -2 на 10 в 11 ст эритроцитов. Увеличение кличества эритроцитов называется эритроцитозом, а уменьшение - эритропенией. В физиологических условиях усиленный эритропоэз происходит при гипоксии - недостатке кислорода в тканях, которая является причиной образования физиологического регулятора кроветворения - эритропоэтина, образующегося в почках. Есть данные об участии селезенки, печени и костного мозга в образовании эритропоэтина. Нервные и эндокринные влияния на эритропоэз осуществляются, по-видимому, опосредованно, через продукцию эритропоэтина, который является специфическим регулятором эритропоэза. Для образования эритроцитов необходим витамин В12 и фолиевая кислота. Витамин В,, поступает в организм с пищей и является внешним фактором кроветворения. Его всасывание происходит лишь в том случае, когда он взаимодействует с внутренним фактором кроветворения (гастромукопротеином), который образуется в слизистой желудка. Для эритропоэза необходим такж витамин С, который стимулирует всасывание железа из кишечника, усиливает действие фолиевой кислоты и способствует образованию гема. Витамин В6 оказывает влияние на синтез гема, а витамин В2, и В, (пантотеновая кислота) необходим для образования липидной стромы эритроцитов.

У взрослых процесс образования эритроцитов – эритропоэз, происходит в красном костном мозге плоских костей. Они образуются из ядерных стволовых клеток, проходя стадии проэритробласта, эритробласта, нормобласта, ретикулоцитов II, III. IV. Этот процесс происходит в эритробластических островках, содержащих эритроидные клетки и макрофаги костного мозга.

Макрофаги выполняют следующие функции:

1. фагоцитируют вышедшие из нормобластов ядра;

2. обеспечивают эритробласты ферринтином, содержащим железо;

3. выделяют эритропоэтины;

4. создают благоприятные условия для развития эритробластов.

Созревание эритроцитов занимает около 5 дней. Из костного мозга в кровь поступают ретикулоциты, дозревающие до эритроцитов в течение суток. По их количеству в крови судят об интенсивности эритропоэза. В сутки образуется 60-80 тысяч эритроцитов на каждый микролитр крови. Т.е. ежесуточно обновляется около 1,5% эритроцитов.

Основным гуморальным регулятором эритропоэза является гормон эритропоэтин. В основном он образуется в почках. Небольшое его количество синтезируется макрофагами. Интенсивность синтеза эритропоэтина зависит от содержания кислорода в тканях почек. При их достаточной оксигенации ген, регулирующий синтез эритропоэтина, блокируется. При недостатке кислорода, он активируется ферментами. Начинается усиленный синтез эритропоэтина. Стимулируют его синтез в почках адреналин, норадреналин, глюкокортикоиды, андрогены. Поэтому количество эритроцитов в крови возрастает в горах, при кровопотерях, стрессе и т.д. Торможение эритропоэза осуществляется его ингибиторами. Они образуются при увеличении количества эритроцитов выше нормы, повышенном содержании кислорода в крови. Эстрогены также тормозят эритропоэз. Поэтому в крови женщин эритроцитов меньше, чем у мужчин. Важное значение для эритропоэза имеют витамины В6, B12 и фолиевая кислота. Витамин B12 называют внешним фактором кроветворения. Однако для его всасывания в кишечнике необходим внутренний фактор Кастла, вырабатываемый слизистой желудка. При его отсутствии развивается злокачественная анемия.

Регуляция гемопоэза










Последнее изменение этой страницы: 2018-06-01; просмотров: 373.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...