Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Анатомо-физиологические особенности органа




Почки чрезвычайно сложный орган, как в плане морфологии, так и физиологии, основные функции которого - экскреция продуктов метаболизма из организма (см. раздел "Выделение ксенобиотиков из организма (экскреция)"), регуляция водного и электролитного баланса. Среди других функций: синтез ферментов метаболизма витамина D, ренина, принимающего участие в образовании ангиотензина, альдостерона, синтез некоторых простогландинов и т.д.

Парный орган, весящий всего около 300 граммов (менее 1% от массы тела человека), получает около 25% минутного объёма сердечного выброса крови. Кровь доставляется к нефронам - функционально-морфологическим единицам почек (около 106 нефронов на почку). Каждый нефрон состоит из сосудистой части - приносящей артериолы, капиллярного клубочка, выносящей артериолы; боуменовой капсулы, окружающей сосудистый клубочек, в которую осуществляется фильтрация первичной мочи; системы извитых и прямых канальцев (U-образная структура прямого отрезка почечного канальца называется петлей Генле), связывающих боуменову капсулу с соединительной и собирательной трубкой, по которым моча выделяется из органа.

Капиллярный клубочек, окруженный капсулой Боумена, это сложно организованный молекулярный фильтр, задерживающий вещества с молекулярной массой более 40000 дальтон (большинство белков крови), но проницаемый для большинства ксенобиотиков и продуктов метаболизма эндогенных веществ ("шлаки"). Примерно 20% объёма плазмы крови, протекающей через почки, переходит (отфильтровывается) из капилляров в капсулу клубочка (180 литров в сутки). Из образующегося фильтрата, в канальцах, обратно резорбируется в кровь большая часть воды, хлорид натрия, другие соли. Благодаря происходящим процессам, выделяющиеся с мочой токсиканты значительно концентрируются в определённых отделах нефрона (главным образом проксимальных отделах почечных канальцев) и интерстициальной ткани почек.

В области сосудистого полюса почечного клубочка в месте впадения в него приносящей артериолы располагается околоклубочковый (юкстагломерулярный) комплекс. Он формируется из собственно юкстагломерулярных эпителиоидных клеток, образующих манжету вокруг приносящей артериолы, специализированных клеток "плотного пятна" дистального отдела почечного канальца (залегает в области его анатомического контакта с полюсом клубочка) и мезангиальных клеток, заполняющих пространство между капиллярами. Функцией комплекса является контроль артериального давления и водно-солевого обмена в организме, путем регуляции секреции ренина (регуляция АД) и скорости кровотока по приносящей почечной артериоле (регуляция объема поступающей крови в почку). Показано участие комплекса в патогенезе токсических поражений почек (см. ниже).

Поскольку основные транспортные и концентрационные процессы происходят в проксимальном отделе канальцев, именно этот отдел нефрона наиболее часто повреждается токсикантами. Кроме того, процессы, проходящие в проксимальных отделах почечных канальцев (реабсорбция воды, секреторные процессы), чрезвычайно энергоёмки, что делает их весьма чувствительными к ишемии.

В петле Генле осуществляется дальнейшая концентрация мочи благодаря механизму контротока. Некоторые вещества, например аналгетики, мочевина, не реабсорбируются в проксимальных канальцах, но интенсивно концентрируются в петле Генле. Наивысшая концентрация таких веществ отмечается в мозговом слое почек.

Далее концентрация мочи, вследствие реабсорбции воды и солей, происходит в дистальном отделе канальцев и собирательной трубке. Этот процесс находится под контролем антидиуретического гормона. В этом же отделе нефрона, благодаря секреции из крови избытка либо водородных, либо амонийных ионов, формируется рН мочи.

Еще одной важной функцией почек, сказывающейся на нефротоксичности ряда веществ, является их способность метаболизировать ксенобиотики. Хотя интенсивность метаболизма значительно ниже, чем в печени, здесь определяются те же ферментативные системы, и напряженность биотрансформации достаточно высока. Уровень активности цитохром-Р450-зависимых оксидаз наивысший в прямом отрезке (pars recta) проксимального отдела почечных канальцев, области особенно чувствительной к токсикантам. Хотя многие ксенобиотики одновременно метаболизируют с образованием активных радикалов и в печени и в почках, повреждение органа, по всей видимости, обусловлено действием той части общего количества вещества, которая метаболизирует именно в почках.

Близость метаболических процессов, протекающих в печени и почках, обусловливает практически одинаковую чувствительность этих органов ко многим ксенобиотикам (хлорированные углеводороды, токсины бледной поганки, паракват и др.). Преимущественное поражение того или иного органа при интоксикации во многом обусловлено тем, каким путем вещество поступило в организм (ингалационно, парентерально, через желудочно-кишечный тракт), то есть, какой из органов окажется первым на пути распределяющегося с током крови соединения. Например, при ингаляционном поражении четыреххлористым углеродом в большей степени страдают почки, при приеме вещества per os - печень.

Таким образом, высокая чувствительность почек к действию токсикантов определяется:

- высокой интенсивностью почечного кровотока и чувствительностью органа к гипоксии;

- способностью концентрировать ксенобиотики в процессе образования мочи;

- обратной резорбцией части экскретируемых ксенобиотиков в клетки эпителия почечных канальцев;

- биотрансформацией ксенобиотиков, сопровождающейся в ряде случаев образованием высокотоксичных промежуточных продуктов.

Характеристика нефротоксического действия

Механизмы действия

Механизмы нефротоксичности имеют биохимическую, иммунологическую и гемодинамическую природу. Поражение органа многими токсикантами носит смешанный характер.

По мнению некоторых авторов (Наумова В.И., Папаян А.В., 1991) причины острой почечной недостаточности могут быть отнесены к одной из следующих групп:

- преренальные;

- ренальные;

- постренальные.

К числу преренальных причин относятся патологические состояния, приводящие к нарушению гемодинамики, сопровождающейся снижением гемоперфузии почек (гиповолемия, шок и т.д.).

Ренальные причины патологии обусловлены повреждением ткани почек.

Постренальные причины связаны с закупоркой дистальных канальцев нефрона и/или собирательных трубок патологическим секретом либо агломератами токсических веществ и их метаболитов.

Биохимические механизмы

Механизмы нефротоксического действия ксенобиотиков многообразны и вместе с тем развиваются по достаточно общему сценарию. Прошедший через фильтрационный барьер в клубочках токсикант концентрируется (примерно в 100 раз) внутри канальцев в силу реабсорбции большей части воды, содержащейся в первичной моче (см раздел "Экскреция"). Под влиянием складывающегося при этом градиента концентрации или в силу процессов активной реабсорбции, ксенобиотики поступает в клетки канальцевого эпителия и там накапливается. Нефротоксическое действие развивается при достижении критической концентрации токсиканта в клетках.

В зависимости от физико-химических свойств веществ, происходит их взаимодействие с молекулами-рецепторами (мембранные структуры, энзимы, структурные протеины, нуклеиновые кислоты), входящими в структуру одного из клеточных компартментов: лизосом (аминогликозиды и др.), цитоплазмы (тяжелые металлы - кадмий), рибосом, гладкого эндоплазматического ретикулума и т.д., что и инициирует развитие токсического процесса.

Для многих органических соединений, этапу их нефротоксического действия предшествует этап их биоактивации проходящий при участии энзиматических, метаболизирующих систем. В механизме нефротоксического действия многих ксенобиотиков (цефалоридин, пуромицин, аминонуклеозид, паракват, четырёххлористый углерод) важную роль играет их способность инициировать процесс образования в клетках свободных радикалов.

Иммунологические механизмы

Нефротоксические процессы иммунного типа, как правило, являются следствием двух основных процессов: (1) отложение в гломерулярных структурах почек комплекса антиген-антитело; (2) образование комплексных антигенов in situ, при взаимодействии почечных белков с токсикантом, с последующей атакой на них антител циркулирующих в крови. Поскольку антитела и иммунные комплексы - высокомолекулярные образования, они, как правило, не выявляются за пределами гломерулярного аппарата. В этой связи иммунные механизмы могут приводить к формированию гломерулонефрита (например, мембранозный гломерулонефрит индуцированный солями золота, ртути, d-пенициламином) или острого интерстициального нефрита (производные пенициллина), но не поражения эпителия почечных канальцев.

Точный механизм, с помощью которого токсикант инициирует реакцию гипериммунной реакции, приводящей к поражению почек в большинстве случаев неизвестен. Иногда ксенобиотики проявляют свойства гаптенов (метициллин), формируя некий собственный антиген, либо способствуют выходу в кровь в норме скрытых антигенов. В некоторых случаях гипериммунная реакция может быть следствием поликлональной активации иммунокомпетентных клеток, как это имеет место при нефропатиях, вызываемых золотом, ртутью, пенициламином.

Повреждение почечной ткани происходит путём реализации определённой цепи событий, характерной для развития аллергических или аутоиммунных процессов (см. раздел "Иммунотоксичность").

Гемодинамические механизмы

Нарушения гемодинамики являются частой причиной развития токсических нефропатий.

При остром поражении токсикантом почечных канальцев функции органа могут нарушаться вследствие закупорки просвета канальцев продуктами распада клеток эпителия, ретроградного тока гломерулярного фильтрата, повышения давления в капсуле Боумена, а вследствие этого и крови в капиллярной сети почечного клубочка. Повышение давления крови в почечных клубочках активирует юкстагломерулярный аппарат почек, вызывая гиперсекрецию ренина. Местный эффект системы ренин-ангиотензин детерминирует артериолярный предгломерулярный спазм, который влечет за собой, с одной стороны, прекращение (или резкое ослабление) поступления крови в клубочек, приостановку гломерулярной фильтрации, а с другой - ишемизацию почечных канальцев и их вторичный некроз. Повреждение ткани усугубляется выходом в сосудистое русло таких биологически активных веществ как тромбоксаны, эндотелин.

В тех случаях, когда объём гломерулярной фильтрации снижается более чем на 70%, эволюция процесса в сторону почечной недостаточности становится необратимой, вероятно вследствие того, что первично неповрежденные нефроны прогрессивно вовлекаются в патологический процесс.










Последнее изменение этой страницы: 2018-04-12; просмотров: 220.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...