Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Последовательностей и рядов.




Признак Вейерштрасса.

Ф-циональную последовательность {fn)x)} x Î E наз. равномерно сходящейся ф-цией f на м-ж Е, если для Î e >0, сущ номер N, такой, что для " т х Î E и " n >N выполняется ¹-во: |fn(x)-f(x)|<e. Если м-ж {fn)x)} равномерно сходится на м-ж Е, то она и просто сходится в ф-ции f на сем м-ж. тогда пишут: fn à f.

наз. равномерно сходящимся рядом, если на м-ж Е равномерно сходится последовательность его частичной суммы. , т. ен. равномерная сходимость ряда означает:Sn(x) à f(x) Не всякий сходящийся ряд является равномерно сходящимся, но всякий равномерно сходящийся – есть сходящийся (не, вот это наверное лет 500 выдумывали.)

Т. (Признак Вейерштрасса равномерной сходимости ряда)

Если числовой ряд: (7),

где a >=0 сходится и для " x Î E и " n = 1,2… если выполняется нер-во |un(x)|<=an(8), ряд (9) наз абсолютно и равномерно сходящимся на м-ж Е.

Док-вы:

Абсолютная сходимость в каждой т. х следует из неравенства (8) и сходимости ряда (7). Пусть S(x) – сумма ряда (9), а Sn(x) – его частичная сумма.

Зафиксируем произвольное e >0 В силу сходимости ряда (7) сущ. номера N, " n >N и вып. нерво

Следовательно: |S(x)-Sn(x)| =

Это означает, что Sn(x) à S(x) что означает равномерную сходимость ряда..

№12

Замена переменных

В тройном интеграле.

Если ограниченная замкнутая область пространства V = f(x,y,z) взаимно однозначно отображается на область V’ пространства = (u,v,w) Если непрерывно дифференцируемы функции: x=x(u,v,w), y=y(u,v,w), z=z(u,v,w) и существует якобиан

то справедлива формула:

При переходе к цилиндрическим координатам, с вязанными с x,y,z формулами: x=rcosj, y=rsinj, z=z (0<=r<=+¥, 0<=j <= 2p, -¥<=z<=+¥)

Якобиан преобразования:

И поэтому в цилиндрических координатах переход осуществляется так:

При переходе к сферическим координатам: r? j q, связанными с z,y,z формулами x=rsinq×cosj, 

y=r sinqsinj, z=rcosq.

(0<=r<=+¥, 0<=j <= 2p,

0<=q <=2p)

Якобиан преобразования:

Т. е. |J|=r2×sinq.

Итак, в сферических координатах сие будет:

2 Свойства равномерно

Сходящихся рядов

Т1 Если ф-ция un(x), где х Î Е непрерывна в т. х0 Î E и ряд (1) равномерно сходится на Е, то его сумма S(x) = также непрерывна в т. х0.

Т2 (Об поюленном интегрировании ряда)

Пусть сущ. ф-ция un(x) Î R и непрерывная на отр. [a,b] и ряд (3) равномерно сходится на этом отрезке, тогда какова бы ни была т. х0 Î [a, b] (4) тоже равномерно сходится на [a,b]. В частности: при x0 = a, х = b: т. е. ряд (3) можно почленно интегрировать.

Т3 (о почленном дифференцировании ряда)

Пусть сущ. ф-ция un(x) Î R и непрерывная на отр. [a,b] и ряд её производных (6) равномерно сходящийся на отр [a,b] тогда, если ряд   сходится хотя бы в одной точке x0 Î [a,b] то он сходится равномерно на всем отрезке [a,b], его сумма S(x) =  является непрерывно дифференцируемой ф-цией и

S’(x)= (9)

В силу ф-л ы (8) последнее равенство можно записать:

( )’ =

So ряд (7) можно почленно дифференцировать

№13

Приложения

Тройных интегралов

Объем тела

Масса тела: , где r(М) = r(x,y,z) - плотность.

Моменты инерции тела относительно осей координат:

Момент инерции относительно начала координат:

Координаты центра масс:

 

 m – масса.

Интегралы, стоящие в числителях выражают статические моменты тела: Myz, Mxz, Mxy относит коорд плоскостей oyz, oxz, oxy. Если тело однородное: r(М) = const, то из формул она убирается и оне упрощаются как в 2ных интегралах.










Последнее изменение этой страницы: 2018-04-11; просмотров: 237.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...