Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Нехромосомная наследственность. Типы цитоплазматического наследования. Основные критерии нехромосомного наследования.




Нехромосо́мноенасле́дование — передача в ряду поколений генов, локализованных вне ядра. Для нехромосомного наследования нередко характерны сложные картины расщепления, не согласующиеся с законами Менделя.

Часто этот тип наследования также называют цитоплазматическим наследованием, понимая под этим наследование генов, расположенных не только в самой цитоплазме, но и органеллах клетки, имеющих собственную ДНК (пластидов, митохондрий), а также инородных генетических элементов (например, вирусов), поэтому его следует отличать от собственно цитоплазматического наследования, при котором наследственные признаки детерминируются не органеллами, а самой цитоплазмой.

Под явлением цитоплазматической наследственности (ЦН) следует понимать наследование признаков и свойств организма, детерминированных элементами цитоплазмы и ее органоидами.Основоположниками изучения цитоплазматической наследственности являются немецкие генетики К. Корренс и Э. Бауэр.

Типы цитоплазматического наследования:

1) Пластидное наследование. О первых фактах пластидного наследования сообщили Э. Баур и К. Корренс еще на заре развития генетики (в 1909 г.). Так, Корренс изучил наследование белой пестролистности у ночной красавицы.На основании результатов исследования был сделан вывод, что наследование пестролистности у ночной красавицы связано с передачей и распределением при клеточных делениях двух типов пластид – зеленых и неокрашенных, причем передаются пластиды яйцеклеткой, в результате чего наследование осуществляется по материнской линии. Развитие белых или зеленых частей растений из зиготы, содержащей пластиды обоих типов, определяется скоростью вос­произведения разных пластид и их распределением в ходе клеточных делений. Например, клетки, получившие только зеленые пластиды, дают зеленые участки тканей, а из клеток, имеющих только неокрашенные пластиды, образуются белые участки, так же образуются побеги с пёстрым окрашиванием.

2) Наследование через митохондрии. У некоторых грибов (дрожжи, нейроспора) была обнаружена дыхательная недостаточность, которая обусловлена необратимыми наследственными изменениями функции митохондрии – у них утрачена активность цитохромоксидазы. Б. Эфрусси обнаружил штаммы, которые спонтанно образуют карликовые колонии с дыхательной недостаточностью. Было получено прямое доказательство роли митохондрии в наследственной передаче дыхательной недостаточности у дрожжей. Вегетативных карликов, лишенных клеточных оболочек, выра­щивали в присутствии изолированных митохондрии нормальных дрожжей. В результате часть образовавшихся колоний (2–2,5%) имели нормальные размеры. Этот факт можно объяснить, предположив, что «нормальные» митохондрии, попав в клетки вегетативных карликов, исправили дефект их дыхательной системы и, передаваясь из клетки в клетку в ходе деления, способствовали образованию нормальных колоний.Для того чтобы взвесить значение отдельных элементов цитоплазмы в наследственности при половом размножении, необходимо, во-первых, определить те свойства, которыми они должны обладать, чтобы осуществлять функцию передачи информации от одного клеточного поколения к другому, во-вторых, определить те структуры цитоплазмы, которые обладают этими свойствами.

Для того чтобы цитоплазма и ее структурные элементы обладали свойством передачи информации в поколениях, они должны:

•     относиться к составным, жизненно необходимым для клетки структурам,

•     обладать способностью к репродукции,

•     распределяться при клеточном делении,

•     иметь способность изменяться и устойчиво передавать эти изменения в поколениях

Основные положения гибридологического метода, разработанного Г. Менделем. Генетическая символика. Правила записи схем скрещивания. Генотип. Фенотип.

Гибридологический метод – изучение наследования путем гибридизации (скрещивания), то есть объединения двух генетически разных организмов (гамет). Гетерозиготный организм, который получается при этом, называется гибридом, а потомство – гибридным.

Основные принципы гибридологического метода:

1) для скрещивания используются чистосортные (гомозиготные) родительские организмы, которые отличаются между собою за одной или несколькими парами альтернативных признаков;

2) проводится точный количественный учет потомства в отдельности за каждым исследуемым признаком в ряде поколений.

С помощью скрещивания можно установить:

1.    доминантен или рецессивен исследуемый признак (и соответствующий ему ген);

2.    генотип организма;

3.    взаимодействие генов и характер этого взаимодействия;

4.    явление сцепления генов;

5.    расстояние между генами;

6.    сцепление генов с полом.

Сущность гибридологического метода изучения наследственности состоит в том, что о генотипе организма судят по признакам его потомков, полученных при определенных скрещиваниях. Основы этого метода были заложены работами Г. Менделя. Мендель скрещивал между собой сорта гороха, различающиеся теми или иными признаками (формой и окраской семян, окраской цветков, высотой стебля и др.), а затем следил, как наследуются признаки того и другого родителя их потомками в первом, втором и последующих гибридных поколениях. Проделав эту работу на достаточно большом количестве растений, Г.Мендель смог установить очень важные статистические закономерности количественного соотношения гибридных растений, обладающих признаками того и другого исходного сорта. Гибридологический метод нашел широкое применение в науке и практике.

В генетике пользуются такими общепринятыми символами:

•     буквой Р (от лат. «парента» — родители) обозначают родительские организмы, взятые для скрещивания;

•     знаком ♀ («зеркало Венеры») — обозначают женский пол;

•     («щит и копье Марса») — обозначают мужской иол.

•     Скрещивание обозначают знаком « , гибридное потомство обозначают буквой F (от лат. «филия» — дети) с цифрой, отвечающей порядковому номеру поколения — F1, F2, F3.

Пары генов часто обозначают буквами:

доминантные – заглавная буква А;

рецессивные– строчная буква а. ♀ ♂

В генетике существуют два очень важных понятия. Это понятия генотип и фенотип. Мы уже знаем, что наследственная конституция складывается из большого числа различных генов. Вся совокупность генов данного организма называется его генотипом, то есть понятие генотипа идентично понятию генетической конституции. Свой генотип (набор генов) каждый человек получает в момент зачатия и несет его без всяких изменений через всю свою жизнь. Активность генов может меняться, но их состав остается неизменным.

Фенотипже представляет собой любые проявления организма в каждый момент его жизни. Фенотип включает в себя и внешний вид, и внутреннее строение, и физиологические реакции, и любые формы поведения, наблюдаемые в текущий момент

Если генотипы наследуются и остаются неизменными в течение жизни индивида, то фенотипы большей частью не наследуются - они развиваются и являются следствием наших генотипов лишь в определенной мере, поскольку большую роль в становлении фенотипов играют условия внешней среды.










Последнее изменение этой страницы: 2018-04-12; просмотров: 929.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...