Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Ряды распределения и их виды
Статистический ряд распределения - это упорядоченое распределение единиц совокупности на группы по какому-либо признаку(упорядоченному)Если за основу группировки взят качественный признак, то такой ряд распределения называют атрибутивным (распределение по видам труда, по полу, по профессии, по религиозному признаку, национальной принадлежности и т.д.). Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, а затем подсчитать числа единиц совокупности с этими значениями (построить групповую таблицу).Ряды распределения по признакам, имеющим количественное выражение называются вариационными рядами. Каждый вариационный ряд состоит из 2х элементов – варианта(х). Варианта(х)-отдельное значение группированного признака вариационного ряда. Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, а затем подсчитать числа единиц совокупности с этими значениями (построить групповую таблицу).Выделяют три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд. Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.Другие формы вариационного ряда - групповые таблицы, составленные по характеру вариации значений изучаемого признака. По характеру вариации различают дискретные (прерывные) и непрерывные признаки.Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака.
Графическое представление рядов распределения Анализ рядов распределения можно проводить на основе их графического изображения. Линейчатые и круговые диаграммы строятся для отображения структуры совокупности. Применяются вместе с диаграммами и такие линии, как полигон, кумулята, огива, гистограмма. При изображении дискретных вариационных рядов используется полигон. Полигон– ломаная кривая, строится на основе прямоугольной системы координат, когда по оси Х откладываются значения признака, а по оси У – частоты. Гладкая кривая, соединяющая точки – это эмпирическая плотность распределения. Кумулята– ломаная кривая, строящаяся на основе прямоугольной системы координат, когда по оси Х откладываются значения признака, а по оси У – накопленные частоты. Для дискретных рядов на оси откладываются сами значения признака, а для интервальных – середины интервалов. На основе гистограмм можно строить диаграммы накопленных частот с последующим построением интегральной эмпирической функции распределения.
Сущность средней величины и условия ее применения Средней величиной статистики называется обобщающая характеристика совокупности однотипных явлений по какому-либо признаку. Среднее показывает характерную, типичную величину признака у единиц совокупности. Средние, которые относятся к статистике относятся к классу степенных средних. Средняя величина - обобщающий показатель, характеризующий уровень варьирующего признака в расчете на единицу однородной совокупно; в конкретных условиях места и времени.Исчисление средних величин предполагает выполнение следующих требований:1) качественная однородность совокупности, по которой исчислена средняя. 2) исключение влияния на исчисление средней величины случайных, сугубо индивидуальных причин и факторов. 3) при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показатель (свойство), на который она должна быть ориентирована. Определяющий показатель может выступать в виде суммы значений осредняемого признака, сунны его обратных значений и т. п. Средняя, рассчитанная по совокупности в целом, называется общей средней, средние, исчисленные для каждой группы, - групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику размера явления, складывающуюся в конкретных условиях данной группы.С помощью метода средних решаются следующие задачи: 1) характеристика уровня развития явлений; 2) сравнение двух или нескольких уровней; 3) изучение взаимосвязей социально-экономических явлений; 4) анализ размещения социально-экономических явлений в пространстве.
|
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 306. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |