Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Процесс транскрипции у эукариот и прокариот во многом сходен, но есть и некоторые отличия в синтезе РНК.




1. У прокариот есть только один тип РНК-полимеразы для синтеза всех типов РНК (иРНК, тРНК, рРНК), а у эукариот известно, по крайней мере, три типа ферментов: РНК-полимераза 1, 2 и 3 для синтеза каждого типа РНК.

2. У прокариот сразу синтезируется зрелая молекула РНК, которая без крупных модификаций принимает участие в синтезе полипептидной цепочки. У эукариот сначала синтезируется молекула РНК – предшественник (про-РНК), которая в результате процессинга превращается в зрелую РНК. Связано это с тем, что гены эукариот состоят из участков, несущих генетическую информацию – экзонов и участков, не несущих генетическую информацию – интронов; как принято говорить, ген имеет "мозаичное" строение. Транскрибируется весь ген целиком, т.е. переписывается информация и из экзонов, и из интронов; при этом образуется молекула про-РНК. Далее из молекулы про-РНК специфическими ферментами вырезаются участки, соответствующие интронам, т.е. участки, генетически незначимые, а участки, соответствующие экзонам, "сшиваются" и формируют прелую молекулу РНК.

3. У эукариот, прежде чем начнется трансляция – второй этап синтеза полипептидов, должна закончиться транскрипция в ядре, затем молекулы РНК через ядерные поры поступают в цитоплазму и там, на рибосомах, начинается трансляция.

9.Основные стадии процесса реализации генетической информации у эукариот

Начальная стадия хранения информации

После окончания клеточного деления, хроматин, который содержит ДНК с генетической информацией находится в так называемом конденсированном состоянии, которое предназначено для того, чтобы в наиболее сохранном виде доставить генетическую информацию из родительской клетки в дочерние. В этом состоянии ДНК находится в максимально компактном состоянии и не работает.

Деконденсация хроматина

Когда деление завершено, ДНК должна быть приведена в активизированное состояние. Для этого она разворачивается под управлением специальных белков хроматина. На этой стадии происходит процесс индукции или суппрессии тех или иных генов, когда они могут становиться либо «говорящими» (экспрессируются), либо «молчащими». Одним из проявлений этого процесса является дифференциацияклеток.

Транскрипция (переписывание)

К развёрнутым участкам ДНК получают доступ специальные ферменты, называемые РНК-полимеразами. ДНК и РНК представляет собой цепочку из звеньев — нуклеотидов. Между нуклеотидами ДНК и РНК существует химическое сродство, что позволяет полимеразе двигаться по ДНК и синтезировать РНК, в точности соответствующую ДНК. Полученная в результате транскрипции РНК называется информационной (иРНК) илиматричной (мРНК). Переписываемый участок не бесконечен, а ограничен с обеих сторон специальными ДНК-последовательностями и называется геном. После транскрипции с гена получается соответствующая ему мРНК. Трансляция и транспорт аминокислот

Основными органическими веществами всех живых организмов на Земле являются белки, а в основе всех белков лежит двадцать аминокислот. Каждый белок представляет собой цепочку из аминокислотных молекул. Чтобы «прочитать» информацию из созданных на предыдущем этапе мРНК, требуется во-первых, постоянная подача аминокислот, а во-вторых, работа по преобразованию генетического кода в аминокислотный. Дело в том, что каждой аминокислоте соответствует тройка нуклеотидов и это соответствие в достаточной мере произвольно. Поэтому в клетке всегда присутствует 20 видов так называемых транспортных РНК (тРНК), которые с одного конца имеют химическое сродство к некоторой тройке нуклеотидов, а с другого конца специальным ферментом (аминоацил-тРНК-синтетаза) присоединяется соответствующая данной тройке аминокислота. То есть, каждая такая тРНК является адаптором, а набор молекул синтетазы, которых тоже 20 видов — таблицей преобразования генетического кода в аминокислотный. тРНК постоянно «вылавливают» плавающие в цитоплазме клетки аминокислоты и доставляют их к месту синтеза белков — к рибосомам.

Синтез (сборка) белков в рибосомах

Рибосомы плавают в цитоплазме клетки и к ним поступают мРНК с информацией из ядра и тРНК с материалом из окружающей цитоплазмы. Рибосома также похожа на застёжку-молнию, только гораздо крупнее РНК-полимеразы и представляет собой целую клеточную органеллу. Во время работы она надевается на цепочку мРНК и скользит по ней. Поступающие в рибосому тРНК соединяются с текущим участком мРНК только в том случае, если ответная часть соответствует закодированной аминокислоте. После этого рибосома получает нужную аминокислоту, отсоединяет её от тРНК и подсоединяет к белковой цепочке, которую она ткёт. Свободная тРНК удаляется, а рибосома переходит к следующей тройке нуклеотидов, после чего процесс повторяется. Оканчивается он тогда, когда будет пройдена вся цепочка мРНК, при этом будет соткан в точности тот белок, который был закодирован в том гене в ДНК, который дал начало всему процессу.

Процессинг тРНК у эукариот протекает по такому же механизму, как и у прокариот. Функционально активные молекулы образуются из более длинного предшественника, который подвергается расщеплению и модификации с включением минорных оснований.

IV. Медицинская генетика

1)Напомним, что главные закономерности наследования признаков открыты с помощью гибридологического метода, разработанного Менделем. Указанный метод легко осуществим в отношении организмов, которые хорошо скрещиваются в искусственных условиях, дают многочисленное потомство, быстро достигают полового созревания, имеют небольшое число групп сцепления, характеризуются незначительным модифицированием признаков под влиянием условий среды. Перечисленным требованиям удовлетворяют горох, кукуруза, кишечная палочка (бактерия), нейроспора (гриб), мышь, плодовая муха дрозофила и другие растительные и животные организмы. Человек не отвечает практически ни одному из этих требований. Прежде всего в человеческом обществе невозможно организовать искусственный подбор брачных пар исходя из задач генетического опыта. В семьях рождается относительно немногочисленное потомство. Период половой зрелости у человека наступает в возрасте 13—14 лет, в связи с чем смена поколений происходит каждые 25—30 лет. Число групп сцепления равно 23 у женщин и 24 у мужчин. Наконец, для людей характерна значительная фенотипическая изменчивость под влиянием условий среды. Все это делает неприемлемым гибридологический метод для изучения генетических особенностей человека. Вместе с тем большое преимущество человека как объекта для изучения закономерностей наследования и изменчивости признаков заключается в том, что усилиями анатомов, физиологов, биохимиков, иммунологов, врачей и других специалистов фенотип людей изучен гораздо более всесторонне, чем у других организмов, исключая, может быть, некоторые нирусы и микроорганизмы. Невозможность применения гибридологического метода на фоне большого интереса к наследственности человека привела к разработке специальных методов изучения генетики человека.

Методы изучения генетики человека, их краткая характеристика. 

Генеалогический методсостоит в изучении родословных на основе менделевских законов наследования и пoмoгaeт установить характер наследования признака (доминантный или рецессивный).
Так устанавливают наследование индивидуальных особенностей человека: черт лица, роста, группы крови, умственного и психического склада, а также некоторых заболеваний. Например, при изучении родословной королевской династии Габсбургов в нескольких поколениях прослеживаются выпяченная нижняя губа и нос с горбинкой.
Этим методом выявлены вредные последствия близкородственных браков, которые особенно проявляются при гомозиготности по одному и тому же неблагоприятному рецессивному аллелю. В родственных браках вероятность рождения детей с наследственными болезнями и ранняя детская смертность в десятки и даже сотни раз выше средней.

Близнецовый метод состоит в изучении различий между однояйцевыми близнецами. Этот мeтoд предоставлен самой природой. Он помогает выявить влияние условий среды на фенотип при одинаковых генотипах.
Выросшие в одинаковых условиях однояйцевые близнецы имеют поразительное сходство не только в морфологических признаках, но и в психических и интеллектуальных особенностях.
С помощью близнецового метода выявлена роль наследственности в ряде заболеваний.

Популяционный метод.Популяционная генетика изучает генетические различия между отдельными группами людей (популяциями), исследует закономерности географического распространения генов.

Цитогенетический методоснован на изучении изменчивости и наследственности на уровне клетки и субклеточных структур. Установлена связь ряда тяжелых заболеваний с нарушениями в хромосомах.
Хpoмocoмные нарушения встречаются у 7 из каждой тысячи новорожденных, и они же приводят к гибели эмбриона (выкидыш) в первой трети беременности в половине всех случаев. Если ребенок с хромосомными нарушениями рождается живым, то обычно страдает тяжелыми недугами, отстает в умственном и физическом развитии.

Биохимический методпозволяет выявить многие наследственные болезни человека, связанные с нарушением обмена веществ. Известны аномалии углеводного, аминокислотного, липидного и других типов обмена веществ.
Так, например, сахарный диабет обусловлен нарушением нормальной деятельности поджелудочной железы – она не выделяет в кровь необходимое количество гормона инсулина, в результате чего повышается содержание сахара в крови. Это нарушение вызывается не одной грубой ошибкой в генетической информации, а целым набором небольших ошибок, которые все вместе приводят или предрасполагают к заболеванию.

2) Генеалогический методсостоит в изучении родословных на основе менделевских законов наследования и пoмoгaeт установить характер наследования признака (доминантный или рецессивный).
Так устанавливают наследование индивидуальных особенностей человека: черт лица, роста, группы крови, умственного и психического склада, а также некоторых заболеваний. Например, при изучении родословной королевской династии Габсбургов в нескольких поколениях прослеживаются выпяченная нижняя губа и нос с горбинкой.
Этим методом выявлены вредные последствия близкородственных браков, которые особенно проявляются при гомозиготности по одному и тому же неблагоприятному рецессивному аллелю. В родственных браках вероятность рождения детей с наследственными болезнями и ранняя детская смертность в десятки и даже сотни раз выше средней.









Изучение родословной

При анализе родословных в первую очередь необходимо установление наследственного характера признака. Если в родословной встречается один и тот же патологический признак несколько раз (на протяжении нескольких поколений), то, вероятно, он имеет наследственную природу. Далее необходимо установить тип наследования (аутосомно-доминантный, аутосомно-рецессивный, Х-сцепленный доминантный или рецессивный, Y-сцепленный.


При составлении родословной исходным является человек - пробанд, родословную которого изучают. Как правило, это и есть больной, или носитель признака, наследование которого необходимо изучить. Родословная может собираться по одному или нескольким признакам. В последнем случае может быть выявлен сцепленный характер их наследования, что используется при составлении хромосомных карт. В зависимости от цели исследования родословная может быть полной или ограниченной. Необходимо все же стремится к наиболее полному составлению родословных, а для этого необходимы сведения не менее чем о 3-4 поколениях семьи пробанда. Составление родословной сопровождается краткой записью о каждом члене родословной с точной характеристикой его родства по отношению к пробанду (легенда родословной). Необходимо также отмечать обследованных и необследованных на наличие исследуемого признака. Получение сведений о родственниках - непростая задача. Пациенты зачастую не знают о болезнях родственников или предоставляют неверные сведения. Для получения более точных сведений применяют анкетирование, а иногда и полное клиническое и лабораторно-генетическое обследование родственников.

3) Аутосомно-доминантный тип наследования

Основные критерии разных типов наследования следующие. При аутосомно-доминантном типе наследования мутантный ген реализуется в признак в гетерозиготном состоянии, то есть для развития болезни достаточно унаследовать мутантный аллель от одного из родителей. Для этого типа наследования (как для аутосомного типа в целом) характерна равная вероятность встречаемости данного признака, как у мужчин, так и у женщин. Большинство болезней этого типа при проявлении у гетерозигот не наносят серьезного ущерба здоровью человека, и в большинстве случаев не влияют на репродуктивную функцию. Гомозиготы же, как правило, нежизнеспособны.Болезнь встречается в каждом поколении. Так как у больного родителя мутантный ген локализован в половине гамет, которые могут быть оплодотворены в равной степени с нормальными клетками, вероятность возникновения болезни у детей 50 %. Однако, анализируя родословные, необходимо помнить о возможности неполного пенетрирования доминантного аллеля, обусловленного взаимодействием генов или факторами среды. Все фенотипически здоровые дети будут здоровы и генетически, если пенетрантность мутантного гена полная. В случае низкой пенетрантности в некоторых поколениях патологические признаки не проявляются. Необходимо также отметить, что некоторые заболевания проявляются не с момента рождения, а лишь в определенном возрасте. Это создает определенные трудности для установления типа наследования. Наиболее часто в клинической практике встречаются следующие болезни с аутосомно-доминантном типом наследования: нейрофиброматоз (болезнь Реклингхаузена), синдром Марфана (пенетрантность около 30 %), миотическая дистрофия, хорея Гентингтона, синдром Элерса-Данло.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 216.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...