Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Особенности потока информации в про - и эукариотипических клетках.




Жизнедеятельность клетки как единицы биологической активно­сти обеспечивается совокупностью взаимосвязанных, приуроченных к определенным внутриклеточным структурам, упорядоченных во вре­мени и пространстве обменных (метаболических) процессов. Эти процессы образуют три потока: информации, энергии и веществ. Благодаря наличию потока информации клетка на основе многовекового эволюционного опыта предков приобретает структуру, отвеча­ющую критериям живого, поддерживает ее во времени, а также передает в ряду поколений. В потоке информации участвуют ядро (конкретно ДНК хромо­сом), макромолекулы, переносящие информацию в цитоплазму. Среди органелл животной клетки особое место в дыхательном обмене принадлежит митохондриям, выполняющим функцию окисли­тельного фосфорилирования, а также матриксу цитоплазмы, в котором протекает процесс бескислородного расщепления глюкозы — анаэроб­ный гликолиз (рис. 2.8). Из двух механизмов, обеспечивающих жизне­деятельность клетки энергией, анаэробный гликолиз менее эффективен. В связи с неполным (в отсутствие кислорода) окислением, прежде всего глюкозы, в процессе гликолиза для нужд клетки извле­кается не более 10% энергии. Недоокисленные продукты гликолиза (пируват) поступают в митохондрии, где в условиях полного окисления, сопряженного с фосфорилированием АДФ до АТФ, отдают для нужд клетки оставшуюся в их химических связях энергию

Возрастные изменения различных тканей, органов в системе человека.

Признаки старения сердечно-сосудистой системы становятся замет­ными обычно в возрасте после 40 лет. Закономерные изменения наблюдаются в стенках сосудов: в них откладываются липиды, прежде всего холестерин, что наряду с другими структурными превращениями снижает эластичность и искажает ответы на различные стимулы, регулирующие кровообращение. В основе функциональных рас­стройств дыхательной системы лежит разрушение межальвеолярных перегородок, что сокращает дыхательную по­верхность, разрастание в легких соединительной ткани, снижает эффективность аэрогематического обмена кислорода. В итоге с возрастом падает жизненная емкость легких, которая к 75 годам достигает всего 56% от уровня в возрасте 30 лет. В процессе старения страдает функция мочевыделителъной системы, снижается интенсивность фильтрации в почечных клубочках (на 31% в 75-летнем возрасте по сравнению с 30-летним), так же как и обратное всасывание веществ из фильтрата в почечных канальцах. Ухудшение функции мочевыделения объясняется гибелью с возрастом значитель­ного количества нефронов (до 44% от уровня 30-летнего возраста), представляющих собой структурно-функциональные единицы почек. Специального внимания заслуживают изменения в процессе ста­рения со стороны мышечной системы и скелета. Снижается сила сокращений поперечно-полосатой мускулатуры, быстрее развивается утомление, наблюдается атрофия мышц. Характерная для стареющих людей перестройка костей заключается в разрежении их вещества (старческий остеопороз), что приводит к снижению прочности.

Дискретность и целостность. Живые существа - дискретная форма жизни, как разнообразие и единый принцип организации.

Дискретность — всеобщее свойство материи. Так, из курса физики и общей химии известно, что каждый атом состоит из элементарных частиц, что атомы образуют моле­кулу. Простые молекулы входят в состав сложных соедине­ний или кристаллов и т. д. Жизнь на Земле также проявляется в виде дискретных форм. Это означает, что отдельный организм или иная биологическая система (вид, биоценоз и др.) состоит из отдель­ных изолированных, т. е. обособленных или ограниченных в пространстве, но, тем не менее, тесно связанных и взаимо­действующих между собой частей, образующих структурно-функциональное единство. Энергетиче­ский аппарат клетки представлен отдельными митохондрия­ми, аппарат синтеза белка — рибосомами и т. д. вплоть до макромолекул, каждая из которых может выполнять свою функцию, лишь, будучи пространственно изолированной, от других. Процессы в самоорганизующихся системах сопровождаются рассеиванием энергии, в связи, с чем их называют диссипативными. Важная черта диссипативных систем — целостность. Она прояв­ляется в том, что поведение элементов в этих системах определяется в большей мере структурой самой системы и в меньшей — их собст­венными свойствами. В своем развитии системы проходят ряд устой­чивых состояний, разделенных периодами неустойчивости, с которыми связано возникновение новой информации.

Биологические науки, их задачи, объекты и уровни познания.

Биологию подразделяют на отдельные науки по предме­ту изучения. Так, микробиология изучает мир бактерий; ботаника исследует строение и жизнедеятельность представителей царства растений; зоология — царства животных и т. д. Вме­сте с тем развиваются области биологии, изучающие общие свойства живых организмов: генетика — закономерности наследования признаков, биохимия — пути превращения органических молекул, экология — взаимоотношения попу­ляций с окружающей средой. Функции живых организмов изучает физиология. В соответствии с уровнем организации живой материи выделились такие научные дисциплины, как молекулярная биология, цитология — учение о клетке, гистология — уче­ние о тканях и т. д. Биология использует самые различные методы. Один из важнейших — исторический, служащий основой осмысле­ния получаемых фактов. К традиционным относится описа­тельный метод; широко используются инструментальные методы: микроскопия (светооптическая и электронная), электрография, радиолокация и др. В самых различных областях биологии все больше воз­растает значение пограничных дисциплин, связывающих биологию с другими науками — физикой, химией, матема­тикой, кибернетикой и др. Так возникли биофизика, биохимия, бионика. Изучение закономерностей, процессов и механизмов индивидуаль­ного развития организмов, наследственности и изменчивости, хране­ния, передачи и использования биологической информации, обеспечения жизненных процессов энергией является основой для выделения эмбриологии, биологии развития, генетики, молекулярной биологии и биоэнергетики. Исследования строения, функциональных отправлений, поведения, взаимоотношений организмов со средой обитания, исторического развития живой природы привели к обособ­лению таких дисциплин, как морфология, физиология, этология, экология, эволюционное учение. Интерес к проблемам старения, вызванный увеличением средней продолжительности жизни людей, стимулировал развитие возрастной биологии (геронтологии).










Последнее изменение этой страницы: 2018-04-12; просмотров: 394.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...