Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

История и современный этап развития биологии.




История современной биологии представляет собой цепь фундаментальных открытий и обобщений, обосновывающих эту идею. Важным аргументом в пользу единства всего живого послужила клеточная теория Т. Шванна и М. Шлейдена (1839). Основные законы наследственности были уста­новлены в прошлом (Г. Мендель, А. Вейсман) и начале текущего (Г. де Фриз, Т. Морган) столетия. Значение указанных законов для утверждения идеи единства органического мира состоит в том, что они вскрыли всеобщий механизм передачи от особи к особи и перераспреде­ления в пределах вида наследственной информации. Этим были созданы предпосылки к вскрытию биологической сущности полового размноже­ния, индивидуального развития, смены поколений. Клеточная теория, положения молекулярной биологии, законы наследственности обосновывают идею единства современного органи­ческого мира. То, что живое представляет собой единство в историчес­ком плане, вытекает из существа теории эволюции, создан­ной Ч. Дарвиным (1858), и получившей дальнейшее развитие в трудах А. Н. Северцева, Н. И. Вавилова, Р. А. Фишера, С. С. Четверикова, С. Райта, И. И. Шмальгаузена. С годами пересматривались принципы и практика лечебной и профилактической медицины. Так, исходя из положений клеточной теории и способствуя ее упрочению, Р. Вирхов создал концепцию целлюлярной патологии (1858), которая на долгое время определила главные пути развития медицины. Использо­вав генетико-биохимический подход в изучении болезней человека, врач А. Гаррод (1908) заложил основы молекулярной патологии, дал ключ к пониманию таких вопросов практической медицины как различная восприимчивость людей к болезням и вариабельность (индивиду­альность) реакций на лекарства.

30. Клетка – генетическая и структурно - функциональная единица многоклеточного организма. Возникновение клеточной организации в процессе эволюции.

Клетка представляет собой обособленную, наименьшую по разме­рам структуру, которой присуща вся совокупность свойств жизни и которая может в подходящих условиях окружающей среды поддержи­вать эти свойства в самой себе, а также передавать их в ряду поколений. Клетка, таким образом, несет полную характеристику жизни. Вне клетки не существует настоящей жизнедеятельности. Поэтому в при­роде планеты ей принадлежит роль элементарной структурной, функ­циональной и генетической единицы. Это означает, что клетка составляет основу строения, жизнедея­тельности и развития всех живых форм — одноклеточных, многокле­точных и даже неклеточных. Благодаря заложенным в ней механизмам клетка обеспечивает обмен веществ, использование биологической информации, размножение, свойства наследственности и изменчиво­сти, обусловливая тем самым. Ископаемые останки клеток эукариотического типа обнаружены в породах, возраст которых не превышает 1,0—1,4 млрд. лет. Более позднее возникновение, а также сходство в общих чертах их основных биохимических процессов (самоудвоение ДНК, синтез белка на рибосомах) заставляют думать о том, что эукариотические клетки произош­ли от предка, имевшего прокариотическое строение. Наиболее популярна в настоящее время симбиотическая гипотеза происхождения эукариотических клеток, согласно которой (рис. 1.4) основой, или клеткой-хозяином, в эволюции клетки эукариотического типа послужил анаэробный прокариот, способный лишь к амебоидному движению.

 

Особенности потока энергии в про - и эукариотипических клетках.

Поток энергии у представителей разных групп организмов обеспе­чивается механизмами энергоснабжения — брожением, фото- или хемосинтезом, дыханием. Центральная роль в биоэнергетике клеток животных принадлежит дыхательному обмену. Он включает реакции расщепления низкокало­рийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот, а также использование выделяемой энергии для образо­вания высококалорийного клеточного «топлива» в виде аденозинтри - фосфата (АТФ). Энергия АТФ, непосредственно или будучи перенесена на другие макроэргические соединения (например, креатинфосфат), в разнообразных процессах преобразуется в тот или иной вид работы — химическую (синтезы), осмотическую (поддержание перепадов концентрации веществ), электрическую, механическую, регуляторную. Макроэргическим называют соединение, в химических связях которого запасена энергия в форме, доступной для использо­вания в биологических процессах. Универсальным соединением такого рода служит АТФ. Основное количество энергии заключено в связи, присоединяющей третий остаток фосфорной кислоты.

Связь биологии с другими естественными науками. Генетика, экология хронобиология как общественные дисциплины.

Наряду с физикой, химией, математикой биология относится к естественным наукам, предмет изучения которых — природа. Особенность предмета биологии в меди­цинском институте заключается в том, что в центре внимания находится человек. Закономерности же развития человека как личности и человеческого общества в целом изучаются социальными (обще­ственными) науками. В процессе поступательного развития и по мере обогащения новыми фактами биология преобразовалась в комплекс наук, исследующих закономерности, свойственные живым существам, с разных сторон. Некоторые из этих наук представлены в медицинских институтах самостоятельными дисциплинами — анатомией, физиологией, гисто­логией, биохимией, микробиологией. Общебиологическая наука, изучающая закономерности взаимоотношении организмов друг с другом и с окружающей средой, называется экологией. Этот термин был предложен немецким биологом Э. Геккелем в 1866 г. Объектом изучения эко­логии являются различные уровни организации жизни, начиная с организменного. Генетика— наука о закономерностях наследственности и изменчиво­сти. По современным представлениям, наследствен­ность — это свойство живых организмов передавать из поколения в поколение особенности морфологии, физиоло­гии, биохимии и индивидуального развития в определен­ных условиях среды. Генетика как наука решает следующие основные зада­чи: изучает способы хранения генетической информации у разных организмов (вирусов, бактерий, растений, жи­вотных и человека) и ее материальные носители; анали­зирует способы передачи наследственной информации от одного поколения клеток и организмов к другому; выяв­ляет механизмы и закономерности реализации генетиче­ской информации в процессе индивидуального развития и влияние на них условий среды обитания.










Последнее изменение этой страницы: 2018-04-12; просмотров: 413.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...