Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Характеристическое излучение. 




  Как отмечалось выше, фотоэффект сопровождается образованием вакансий на ближних к ядру электронных оболочках, которые при переходе атома в основное невозбужденное состояние заполняются электронами с внешних по отношению к вакантной оболочек с образованием характеристическогофотонного излучения, т.е. фотонов с энергиями, равными разнице энергий электронов на оболочках, между которыми происходит переход. При Е/γ K в основном происходит выбивание электрона с К-оболочки, вакансия занимается электроном с L-оболочки, и энергия фотонов характеристического излучения Еγ = ЕKL..Наиболее заметен выход характеристического излучения для тяжелых сред и при низких энергиях фотонов. Энергия фотонов характеристического излучения для тяжелых атомов может достигать 0,1 МэВ (0,075 МэВ для свинца), для легких атомов она мала и эти фотоны практически сразу же поглощаются в веществе. Таким образом, дискретные энергии фотонов характеристического излучения не превышают примерно 100 кэВ, поэтому в большинстве задач защиты и радиационной безопасности при работе с источниками фотонов с энергией выше 0,5 МэВ их вкладом в характеристики поля фотонного излучения можно пренебречь. Следует отметить, что анализ спектров характеристического излучения широко используется в активационном анализе, учитывая однозначную связь между энергией этих фотонов и атомным номером химического элемента.

Каскадные переходы электронов между уровнями могут сопровождаться не только выходом характеристического излучения, но и испусканием электронов. Эти электроны Оже имеют кинетическую энергию равную также, как и фотоны разнице энергий уровней, между которыми происходит переход.

Когерентное рассеяние. 

При низких энергиях фотонов взаимодействие фотона с атомными электронами нельзя рассматривать, как рассеяние фотона на свободном электроне. В рамках классической электродинамики фотонная волна вызывает вынужденные колебания атомного электрона, который при этом сам излучает электромагнитную волну с той же частотой, что и первичная, но в другом направлении. Из формулы (3.22) при Еγ/<< mc2 cледует, что Еγγ/, т.е. рассеяние происходит без потери энергии и комптоновское рассеяние переходит в томсоновское рассеяние на электроне, дифференциальное микроскопическое поперечное сечение которого из (3.25) равно:

 

              dσ (θs)/dΩ =(re2/2) (1+μs2)                (3.34).

 

а полное микроскопическое поперечное сечение томсоновского рассеяния на электроне становится равным:

                     σтомс= πre2 ≈ 6,65 *10-252             (3.35)        

Если бы все атомные электроны участвовали в когерентном рассеянии независимо друг от друга, то их суммарный эффект при малых значениях передаваемого импульса точно компенсировал бы описанное выше уменьшение комптоновского рассеяния за счет нерелятивистской функции рассеяния Хартри‑Фока, однако вследствие эффекта связанности, электроны атома участвуют в рассеянии когерентно. Поэтому вероятность рассеяния возрастает вследствие явлений интерференции. Интерференция может охватывать электроны, принадлежащие разным атомам, и полная интенсивность когерентно рассеянных фотонов возрастает ещё больше и концентрируется в узком пучке в направлении первичных фотонов. В этом случае, дифференциальное микроскопическое поперечное сечение когерентного рэлеевского рассеяния на атоме вычисляется путем введения дополнительного множителя к распределению Томсона по следующей формуле:

 

ког (Z, ν, μs )/dΩ =(re2/2) (1+μs2 )[С(Z,ν(μs/ )]2 (3.36).

 

где С(Z,ν(μs/)] - релятивистский атомный форм-фактор Хартри-Фока, учитывающий эффект связанности электронов (Рис.3.8). Параметр ν подробно описан выше.

Рис.3.8 Атомный форм-фактор Хартли-Фока

 

Основной эффект влияния атомного форм-фактора заключается в уменьшении вероятности рассеяния фотонов в обратном направлении для высоких энергий и лёгких элементов, что противоположно действию функции рассеяния I(Z,v(μs/)) (см.стр.43.) Приближенно С~Z2, что свидетельствует о возрастании роли когерентного рассеяния с ростом атомного номера. При энергии фотонов 0,5 МэВ соотношение между сечениями когерентного и комптоновского рассеяний для легких материалов составляет 10-4, растет до примерно 10-2 для материалов со средним атомным номером и для тяжелых эта величина достигает примерно 10-1. Значительно больший вклад дает когерентное рассеяние на малые углы для тяжелых материалов.










Последнее изменение этой страницы: 2018-05-27; просмотров: 214.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...