Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Методы диагностирования металлов (дать краткую характеристику).




Существует достаточно много различных методов оценки качества сплавов драгоценных металлов.

Оценка по пробирному камню

В XVII в. наиболее популярными в России были методы оценки по изменению цвета при накаливании или с помощью специального пробирного камня, который делался из плотного, не поддающегося действию кислот черного сланца. На нем специальными пробирными иглами наносились штрихи, на которые воздействовали реактивами и наблюдали за их изменением под действием реактивов. Последний метод до сих пор используется при экспертизе в лабораторных условиях, но он непригоден в оперативной работе.

Электрохимический метод диагностики

Электрохимический метод диагностики металлов основан на измерении электродного потенциала, возникающего в результате химической реакции исследуемого металла со специальным электролитом и

в последующем сравнении полученного электрического потенциала с величиной потенциала известного электрода. Таким способом можно определять пробы золота, серебра и металлов платиновой группы.

Однако достоверность контроля невысока. Метод реализован в отечественных приборах ≪Проба-М≫, ≪Карат≫, ≪Дельта-1≫ и др.

Индукционный метод

Известны приборы, основанные на использовании индукционного метода. В таких приборах датчик представляет собой катушку индуктивности, магнитное поле которой меняется при приближении к металлическому предмету. Характер изменения магнитной индукции поля зависит от вида металла. К приборам, в основу функционирования которых положен этот метод, относятся металлоискатели. Современные металлоискатели могут различать некоторые виды металлов, но их диагностическая точность невелика.

Метод рентгенофлуоресцентного анализа

Эффективным и оперативным методом диагностики драгоценных металлов и сплавов является метод рентгенофлуоресцентного анализа.

Определение состава исследуемого образца основано на регистрации характеристического рентгеновского излучения неизвестного сплава.

Принцип действия рентгенофлуоресцентного анализа состоит в том, что излучение радиоактивного или рентгеновского источника падает на анализируемый образец и возбуждает атомы веществ, из которых он состоит.

Возбужденные атомы излучают флуоресцентное рентгеновское излучение. Спектральный состав рентгеновского излучения определяется при помощи полупроводникового детектора, в котором возникают импульсы тока, пропорциональные энергии (и, следовательно, частоте) поглощенного рентгеновского кванта. По энергетическому (или частотному) спектрам излучения можно судить о составе исследуемого образца.

На вооружении таможенных органов Российской Федерации сегодня находятся приборы типа ≪ПРИМ-1 РМ≫, ≪Призма≫ и ≪Магний≫, ≪МетЭксперт≫, реализующие такой метод.

Методы диагностирования драгоценных камней (дать краткую характеристику).

При исследовании драгоценных камней наиболее важны методы определения их физических свойств. а) Определение твердости производится с помощью набора специальных «карандашей» с заделанными в них остроугольными кусочками эталонных минералов шкалы Мооса. Царапание ограненных камней такими карандашами следует выполнять осторожно, на рундисте. б) В числе приборов для изучения оптических свойств можно назвать рефрактометр, микроскоп, полярископ, спектроскоп. С помощью рефрактометра, как правило, удается различить драгоценные камни между собой. Так, легко можно отличить природные шпинели от синтетических. Рефрактометрия устанавливает достаточно большое различие в их светопреломлении — 1,718 для природных и 1,730 для синтетических шпинелей; кроме того, у синтетических шпинелей в полярископе или под поляризационным микроскопом можно наблюдать аномальное двупреломление. Различить же при посредстве рефрактометра природные и синтетические корунды невозможно, так как свето- и двупреломление и у тех, и у других одинаково. Здесь может оказать помощь лишь изучение камней под микроскопом. Природные корунды почти всегда обнаруживают зоны роста, которые имеют прямолинейные ограничения, смыкающиеся между собой в углах, в то время как у синтетических корундов, выращенных по методу Вернейля. Характерные включения также служат основанием для почти однозначных определений. Если иногда, против ожидания, даже при больших увеличениях зоны роста не обнаруживаются, то камни можно надежно различить на основе и с помощью характерных включений*. Отличить природные и синтетические камни от имитаций тоже не слишком трудно. Стекло, как правило, узнать очень легко, особенно под микроскопом, по присутствующим в нем шлирам и газовым пузырькам. Применение рефрактометра не всегда дает вполне однозначный результат, но все же светопреломление в интервале 1,41—1,77 при отсутствии двупреломления у природных драгоценных камней ограничено очень немногими точно определенными участками (строго ориентированными сечениями кристаллов). Если у камня с таким преломлением не оказывается двупреломления, следует по меньшей мере заподозрить, что это вовсе не камень, а стекло; проверить подобное подозрение можно очень быстро, воспользовавшись микроскопом. Стекло можно отличить от природных драгоценных камней и по разнице в теплопроводности: охлажденные камни дольше сохраняют низкую температуру, чем охлажденное стекло, которое согревается быстрее**. Дублеты и триплеты очень четко обнаруживают под микроскопом резкую линию или плоскость раздела, по которой располагается масса воздушных пузырьков. При исследовании таких дублетов и триплетов, равно как и любых других камней, требующих обязательного использования микроскопа, следует настаивать на том, чтобы камни извлекались из оправы. Как правило, на лицевой части дублетов помещается фрагмент природного драгоценного камня, дающий на рефрактометре безупречные значения преломления, относящиеся к соответствующему минералу. Если при этом камень заключен в оправу, то она, как правило, препятствует тщательному наблюдению критической зоны. Не существует таких методов исследования, которые были бы приемлемы для всех без исключения драгоценных камней и не таили бы ошибки. Показания приборов дают частные значения измеряемых величин, с помощью которых производится определение. При этом по возможности следует прибегать к использованию нескольких методов, с тем чтобы повысить надежность определения и уменьшить вероятность ошибок.

Технические средства оперативной диагностики драгоценных материалов (детекторы «ПРОБА-М», «КАРАТ», «ДЕЛЬТА-1М»: технические характеристики).

Детектор «Проба-М»

Принцип работы детектора ≪Проба-М≫ — электрохимический. Детектор состоит из четырех конструктивных узлов: измерительного блока, датчика, внешнего блока питания, предметного столика.

На границах фаз ≪объект — электролит — платиновый электрод датчика ≫ происходят электрохимические процессы и между платиновым электродом и исследуемым металлом появляется электрический потенциал (напряжение), который зависит от типа драгоценного металла и его процентного содержания в исследуемом сплаве.

В измерительном блоке происходит сравнение электродного потенциала неизвестного сплава и электродного потенциала платины. Полученное значение разности потенциалов точно характеризует состав сплава. Сплав может быть определен по таблице или индицироваться на дисплее прибора.

Детектор «Карат»

Датчик для определения содержания драгоценного металла в детекторе ≪Карат≫ аналогичен по конструкции используемому в приборе ≪Проба-М≫.

В отличие от прибора ≪Проба-М≫, в детекторе ≪Карат≫ на индикатор выводится не просто цифровой код, а непосредственно номер пробы. Прибор, кроме визуальной индикации, снабжен звуковой индикацией.

Анализатор электрохимический «Дельта-1» – специальный прибор российского производства, являющийся модификацией детектора «Проба-М». Устройство эксплуатируется в таможенных органах России и используется для экспресс-идентификации драгоценных металлов и сплавов. Помимо золота, платины и серебра, анализатор применяется для идентификации ювелирных (драгоценных) камней: алмаза, корунда, берилла, циркона.
Это устройство относится к категории приборов неразрушающего контроля материалов и изделий. Принцип его действия основан на измерении температуропроводности (скорости измерения температуры), пропорциональной коэффициенту теплопроводности вещества. Используя этот принцип, можно определять минералы с повышенной теплопроводностью (в частности, алмазы), выделив их из ряда других камней.

Характеристики

Анализ Наименование
Анализ металлов, сплавов Золото, серебро, платина
Анализ минералов алмаз, корунд, берилл,цирконстекло

 










Последнее изменение этой страницы: 2018-05-10; просмотров: 304.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...