Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Особенности построения цифровых систем передачи (ЦСП). Обобщенная структурная схема ЦСП




В настоящее время цифровые методы и устройства передачи информации являются основными в телекоммуникационных системах благодаря совокупности своих достоинств, таких каквысокая помехоустойчивость, простота группообразования, возможность интеграции разнородного трафика, высокая технологичность и др. Укрупненная структурная схема ЦСП приведена на рисунке 4.1.1.

 

t
S
м
S
ккод
t
Модулятор
Источники сообщения (телефон)
S
c
t
АЦП
  Получатель  
ЦАП
Демодулятор
Шумы,
помехи
КАНАЛ
Ант

 

 


Рисунок 4.1 – Структурная схема ЦСП

 

Здесь аналоговый сигнал Sс(t) с выхода источника сообщения проходит через аналого-цифровой преобразователь (АЦП), преобразуясь в двоичный цифровой код Sк(t). Для передачи по линии связи (медный кабель, ВОЛС, радиоканал) этот сигнал с помощью модулятора или кодирующего устройства преобразуется к виду Sм(t), позволяющему передачу на большие расстояния с минимальными искажениями. В приемной части ЦСП происходят обратные преобразования с помощью демодулятора и цифро-аналогового преобразователя (ЦАП). В канале передачи сигнал S(t) искажается при воздействии шумов и помех, которые наиболее эффективно проявляют себя в канале связи и во входных каскадах приемника.

 


Цифровой сигнал

 

Рассмотрим процесс формирования цифрового сигнала (рисунок 4.1.2), который можно разбить на три этапа:

tик
5
1
3
5
t
Цифровой двоичный код
1 0 1
1 0 1
0 1 1
0 0 1
 
 
Sкв
D
t
t
 111-7 110-6 101-5 100-4 011-3 010-2 001-1  
 
 S
Sа (t-кtд)
t
t
   7  6  5  4  3  2  1    
Sa(t)

 

 

Рисунок 4.2 – Формирование цифрового сигнала

а) дискретизация во времени;

б) квантование по уровню;

в) кодирование (импульсно-кодовая модуляция).

На первом этапе вместо непрерывной функции времени SС(t) формируется совокупность дискретных отсчетов SС(t–кtд), взятых в равноотстоящих друг от друга моментах времени с интервалом tд.

В соответствии с теоремой Котельникова этот интервал определяется верхней частотой в спектре сигнала ¦в

tд£ .                                      (4.1)

Обосновать это неравенство можно следующим образом. Спектр дискретизируемого сигнала (рисунок 4.1.3) является периодической функцией частоты ¦ с периодом 1/tд. Для того чтобы лепестки этой функции не перекрывались необходимо, чтобы:

                                     1/tд³2¦в.

 

 

Sи(f)
Sд(f)
f
1/tд
fв
0

 


Рисунок 4.3 – Спектр дискретного сигнала

Если это неравенство не выполняется, спектр сигнала искажается в области высоких частот. Во временной области это приводит к тому, что наиболее быстрые изменения сигнала при дискретизации будут пропущены.

Полученный дискретный сигнал или сигнал с амплитудно-импульсной модуляцией (АИМ) может принимать в своих отсчетах любые непрерывные значения. Чтобы число амплитудных значений было конечно, на втором этапе (рисунок 4.1.2, б) проводят операцию квантования. Она заключается в том, что значение отсчета сравнивается с некоторым уровнем, близким к нему, и приравнивается либо к величине этого уровня, либо к другой величине, связанной с ним. Такой величиной, например, может быть среднее значение между соседними уровнями.

При равномерном квантовании расстояние между соседними уровнями (шаг квантования) D одинаков. Процесс квантования сопровождается искажениями сигнала, которые тем больше, чем больше D. Эти искажения можно охарактеризовать мощностью шумов квантования, которая пропорциональна величине (D/2)2. Поскольку отсчеты дискретного сигнала Sk являются случайной величиной, статистическое усреднение для равномерного квантования приводит к результату:

Ршкв= .                                 (4.2)                                        

В свою очередь шаг квантования D зависит от максимального значения сигнала Smax и числа уровней n.

Число уровней квантования можно найти, задавая отношение сигнал-шум, если в качестве основного источника шума взять шумы квантования.

           (4.3)

Если сигнал гармонический:

 

S = Smcosw0t, то

 

   (4.4)

 

В (4.3)и (4.4) - =среднее значение, а Sm – амплитуда сигнала.

В соответствии с требованиями стандартов минимум качества обеспечивается при =26 дБ. Подставляя это значение в (4.4),найдем n=8.

Но это соотношение должно выполняться для самого минимального входного сигнала. Если учесть динамический диапазон сигнала на входе и взять случай более высокого качества передачи, то число уровней n будет много больше 8. Так если D=40 дБ, то n=800, а разрядность кодера r=10.

Приведенный пример указывает на избыточность, возникающую при формировании цифрового сигнала, поскольку нет необходимости большие значения входного сигнала передавать с такой же точностью, что и малые. Поэтому при квантовании применяют процедуру неравномерного квантования (рисунок 4.4), когда шаг квантования входного сигнала увеличивается с ростом сигнала. Эта процедура называется компрессией или сжатием динамического диапазона. На практике компрессию совмещают с кодированием, применяя кусочно-линейную характеристику вместо логарифмической (рисунок 4.5). При этом угол наклона отрезков прямых в каждом сегменте уменьшается в два раза. Применение неравномерного квантования позволяет ограничить число разрядов r=8.

 

 

На третьем этапе сигнал Sкв(t), дискретный во времени и по амплитуде, с помощью импульсно-кодовой модуляции (ИКМ) преобразуется в цифровой код. Наиболее распространенным является двоичный цифровой код (рисунок 4.2, в). Особенностью этого кода, представленного набором электрических импульсов, является то, что длительность каждого импульса в кодовой комбинации ИКМ tик= в r раз меньше длительности исходного импульса. Это приводит к соответствующему расширению спектра.

 

tga
1/8
1/4
31
1
1/2
Sвх
Sвых
 95
223
Нелинейное кодирование замена ломаной прямой
Рис. 4.5– Аппроксимация при неравномерном квантовании










Последнее изменение этой страницы: 2018-05-10; просмотров: 237.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...