Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнения массо-, тепло- и импульсопередачи




Локальная форма уравнений

Рассмотрим перенос субстанций из фазы 1 через межфазную поверхность в фазу 2 за счет молекулярного и турбулентного механизмов. Примем, что сопротивлением переносу субстанции со стороны межфазной поверхности можно пренебречь. Это равносильно предположению об установлении равновесия на границе раздела фаз, т.е.:

 

, , .                        (2.77)

 

 

 



Рис 2.7. Схема межфазного переноса субстанций.

Предположим μi1i2, тогда;

 

.                             (2.78)

 

Разделим уравнения на βi1 и βi2 соответственно и их сложим:

 

                      (2.79)

Здесь  - коэффициент массопередачи,  - движущая сила массопередачи. Уравнение (2.79) носит название уравнения массопередачи.

Химические потенциалы неидеальных (реальных) систем определить достаточно сложно, поэтому при анализе и расчете процессов массопереноса обычно рассматривают изменение не химических потенциалов, а концентраций компонентов, определение которых значительно проще. Разность между рабочими и равновесными концентрациями компонента в одной из фаз являются движущей силой массообменного процесса.

Аналогичным образом могут быть получены уравнения тепло- и импульсопередачи:

 

,                       (2.80)

 

если Т12.

, ,                              (2.81)

 

если wx1>wx2

Здесь Кт и Кг – коэффициенты тепло- и импульсопередачи. Коэффициенты в соотношениях (2.79) – (2.81) могут быть представлены иначе:

 

,                          (2.82)

 

где  - сопротивления массо-, тепло-, импульсопередачи (межфазные сопротивления), а  - сопротивления массо-, тепло- и импульсоотдачи (фазовые сопротивления).

Соотношения (2.82) выражают аддитивность фазовых сопротивлений. Например, если процесс теплопередачи идет через стенку:

 

,                                 (2.83)

 

где rст – термическое сопротивление стенки.

Профили wx, Т, μi в процессе переноса субстанции через границу раздела фаз, не обладающую сопротивлением, приведены на рис. 2.8.

 

 

 

 



Рис 2.8. Профили химических потенциалов, температуры и скорости в процессах переноса субстанций через границу раздела фаз

 

Здесь δ – толщина пограничных слоев.

Если сопротивление одной из фаз, например первой, гораздо больше второй, то последним можно пренебречь:

 

                                          (2.84)

 

Из (2.84) следует, что  при βi1 << βi2, α1 << α2, γ1 << γ2.

Интенсификация процессов переноса требует увеличения коэффициентов субстанциипередачи. Для этого необходимо увеличить наименьший коэффициент субстанцииотдачи.










Последнее изменение этой страницы: 2018-05-10; просмотров: 170.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...