Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Практическое применение. Понятие об ионной и ион-парной хроматографии




Рис. 24.7. Определение NaCl методом ионообменной хроматографии

Ионный обмен используется для разделения различных неорганических и органических ионов, например, с целью устранения мешающего влияния одних ионов при обнаружении других, выделения определённых ионов из смеси и т.д. На рис. 24.7 показан простейший вариант использования ионообменной хроматографии для количественного определения веществ.

Современными хроматографическими методами анализа, в которых используется ионообменное разделение, являются ионная и ион-парная хроматография.

Ионной хроматографией называется колоночная ионообменная жидкостная хроматография с кондуктометрическим детектированием.

В качестве неподвижной фазы в ионной хроматографии используют поверхностно-пористые ионообменники, состоящие из твёрдого ядра, покрытого тонким слоем ионита. Для таких сорбентов характерны диаметр зёрен меньше 50 мкм, низкая ионообменная ёмкость, механическая прочность, химическая устойчивость, быстрое время установления ионообменного равновесия.

Высокочувствительное кондуктометрическое определение ионов возможно только при невысокой фоновой электропроводности потока жидкости, поступающей в детектор. По этой причине предложено два основных варианта ионной хроматографии:

Схема двухколоночной ионохроматографической системы показана на рис. 24.8.

Рис. 24.8. Схема двухколоночной ионохроматографической системы

При прохождении через подавляющую колонку фоновый электролит превращается в соединение с низкой электропроводностью, а определяемый ион – в соединение с высокой электропроводностью. Например, при разделении катионов щелочных металлов в качестве элюента используется раствор HNO3. В разделяющей колонке, заполненной катионообменником, происходит ионный обмен и разделение катионов. В подавляющей колонке находится анионобменник в OH-форме. При прохождении через подавляющую колонку анионы разделяемых солей и нитрат-ионы, входящие в состав элюента, полностью обмениваются на гидроксид-ионы. Таким образом, HNO3 превращается в H2O, а соли щелочных металлов – в соответствующие гидроксиды (сильные электролиты).

Ион-парной хроматографией называется вариант жидкостной хроматографии, при котором в подвижную фазу добавляют реагент, в состав которого входит гидрофобный ион, хорошо адсорбирующийся на поверхности неподвижной фазы – силикагеля с привитыми алкильными группами (см. рис. 24.1). В качестве ион-парных реагентов при разделении катионов обычно используют алкилсульфаты или алкилсульфонаты, а при разделении анионов – ионы тетраалкиламмония.

Принято считать, что разделение и удерживание веществ в ион-парной хроматографии обусловлено двумя механизмами:

· сорбцией ион-парного реагента на поверхности неподвижной фазы и превращении её в ионообменник;

· взаимодействием разделяемых веществ и ион-парного реагента в подвижной фазе с образованием ионных пар, которые затем адсорбируются на неподвижной фазе.

Ион-парная хроматография используется для разделения ионизированных веществ, которые обладают хорошей растворимостью в полярной подвижной фазе, незначительным сродством к неполярной неподвижной фазе и не могут быть удовлетворительно разделены в условиях обычной обращённо-фазовой ВЭЖХ.

В качестве примера на рис. 24.9 показана жидкостная хроматограмма этанольного извлечения из корня барбариса, содержащая смесь алкалоидов, протобербериновой группы (пик, отмеченный значком *, соответствует берберину – см. рис. 20.10), полученная с помощью микроколоночного жидкостного хроматографа «Миллихром-4». Колонка длиной 64 мм и диаметром 2 мм. Неподвижная фаза – Separon SGX - C18 (диаметр частиц сорбента 5 мкм). Подвижная фаза – смесь ацетонитрила и водного 5×10-2 М KH2PO4 (40:60) c добавлением 2×10-3 М додецилсульфата натрия. Детектор – спектрофотометрический (260 нм).

Рис. 24.9. Хроматограмма этанольного извлечения из корня барбариса










Последнее изменение этой страницы: 2018-05-10; просмотров: 250.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...