Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Симметричные и несимметричные p-n-переходы




Электроника

1.Электропроводность твердого тела. Проводники, полупроводники. диэлектрики.

Упорядоченное направленное движение зарядов под действием сил внешнего электрического поля называется электрическим током.

Способность веществ, проводить электрический ток называется электропроводностью.

В зависимости от электропроводности все вещества делят на три группы:

1) Проводники – вещества, обладающие хорошей электропроводимостью, следовательно, хорошо проводящие электрический ток. Делятся на две подгруппы:

а) Первого рода – металлы и их сплавы. В них большое количество свободных электронов, которые под действием сил внешнего электрического поля приобретают скорость направленного движения, следовательно ток в проводника первого рода – это упорядоченное направленное движение электронов, а значит не сопровождается переносом вещества и химическими реакциями.

Проводник первого рода помещён в электростатическое поле, происходит явление электромагнитной индукции – мгновенное перемещение свободных зарядов к одной поверхности проводника. На этой поверхности возникает избыточный отрицательный заряд, недостаток электронов у противоположной поверхности создает избыточный положительный заряд, следовательно заряженные поверхности проводника создают собственное поле, направленное против внешнего и всегда его уравновешивающего. На этом основано экранирование – защита части пространства от внешних электрических полей.

б) Второго рода- это электролиты – водные растворы солей, кислот, щелочи, в них под действием растворителя (воды) происходит расход молекул на положительно и отрицательно заряженные ионы (электролитическая диссонация). Во внешнем электрическом поле ионы приобретают скорость направленного движения. значит ток в проводниках второго рода – это направленное движение ионов, а значит. сопровождается переносом вещества и химическими реакциями.

2) Диэлектрики – вещества, не имеющие свободных зарядов, а потому не способные проводить постоянный электрический ток. Делятся на две группы: неполярные и полярные диэлектрики.

У неполярных диэлектриков электронные орбиты расположены так, что при отсутствии внешнего поля электрические центры «+» и «-» в одной точке атом не создает диполя. Во внешнем поле орбиты смещаются так. что электрические центры «+» и «-» в разных точках, образовалась диполь – два одинаковых по величине, но противоположных по знаку связанных заряда. Произошла поляризация диэлектрика – деформационная.

У полярных диэлектриков диполи существуют от природы без всякого внешнего поля, но ариентированны хаотически. Во внешнем поле диполи поворачиваются и выстраиваются вдоль линий внешнего поля. происходит поляризация. которая наз-ся ориентационной.

Внутри любого поляризационного диэлектрика поля существует, но по сравнению со внешним оно ослаблено в Е раз.

Постоянный электрический ток диэлектрики не проводят, а переменный ток проводят – направленное колебательное движение диполей под действием сил внешнего переменного электрического поля.

О том, что колебательные движения можно назвать электрическим током говорит опыт Эйхенвольда.

При протягивании диэлектрика в месте АВ присходит … временный поворот на 180 градусов и это сопровождается возникновением магнитного поля, которое всегда сопутствует электрическому току.

Существуют:

Ток проводимости – упорядоченное направленное движение свободных зарядов под действием внешнего электрического поля (постоянный, переменный).

Ток смещения связанных зарядов (в диэлектрике) – колебательное движение диполей под действием сил внешнего переменного электрического поля.

3) Полупроводники – вещества, занимающие промежуточное положение по электропроводимости между проводниками и диэлектриками. Ток в них это направленное движение свободных электронов и дырок, зависит от некоторых факторов (температура. освещенность, наличие примесей).

2.Собственные и примесные полупроводники.

Собственный полупроводник – это полупроводник, в котором можно пренебречь влиянием примесей при данной температуре. Согласно зонной теории твердого тела для полупроводников характерно наличие не очень широкой запрещенной зоны на энергетической диаграмме. Она выражает количественно энергетические затраты на разрыв связи и освобождение электронов из валентной зоны. Собственный полупроводник при К не обладает электропроводностью (зона проводимости свободна). При темп-ре выше  из-за тепловых флуктуаций некоторые электроны могут оказаться в зоне проводимости. При этом в валентной зоне образуются «дырки». Дырки тоже участвуют в электропроводности за счет своих эстафетных переходов под действием электрического поля.

Чем больше Т и меньше , тем выше скорость генерации носителей.

Одновременно в полупроводнике идет обратный процесс – рекомбинация носителей заряда, то есть возвращение электронов в валентную среду. В результате в полупроводнике устанавливается равновесная концентрация «n» и «p». Специфика собственного полупроводника в том, что в нем

Концентрация носителей в нем определяется из выражения

где  и  эффективные плотности состояния в зоне проводимости и в валентной зоне.

График в координатах ln n = f(1/T) - прямая линия, tg которой характеризует .

Собственный полупроводник в приборах используют редко.

Примесный – это полупроводник, электрофизические свойства в котором определяются примесями. Примеси создают дополнительные уровни в запрещенной зоне. При малой концентрации примесей, расстояние между примесными атомами велико, их электронные оболочки не взаимодействуют, и примесные энергетические уровни являются дискретными. Примеси, исходя из своего местонахождения, называются примесями замещения и примесями внедрения.

Примеси поставляющие электроны в зону проводимости называются донорными . Их уровни располагаются в запрещенной зоне вблизи нижнего края зоны проводимости. В таком полупроводнике > ,поэтому полупроводник называется “n”- типа. Уровни расположенные несколько выше валентной зоны называются акцепторными, а создающие их примеси называются акцепторными. Так как электроны, заброшенные на них, не участвуют в проводимости (больше ), то в таком полупроводнике > , а полупроводник называется полупроводником “р”- типа. На поведение примесных атомов влияет их валентность. Примеси замещения, валентность которых больше валентности основных атомов решетки проявляют свойства доноров, а если их валентность меньше, то акцепторов. Так Si,As,Sb,P - доноры, а Al,B,Ga, - акцепторы. Носители, концентрация которых больше, называются основными, а концентрация, которых меньше, неосновными.

Соотношения ni pi = ni2 , называется соотношением действующих масс для носителей заряда.

3. Легирование полупроводников.

Леги́рование (нем. legieren — «сплавлять», от лат. ligare — «связывать») — внесение небольших количеств примесей или структурных дефектов с целью контролируемого изменения электрических свойств полупроводника, в частности, его типа проводимости.

При производстве полупроводниковых приборов легирование является одним из важнейших технологических процессов (наряду с травлением и осаждением).

Цели легирования

Основная цель — изменить тип проводимости и концентрацию носителей в объёме полупроводника для получения заданных свойств (проводимости, получения требуемой плавности p-n-перехода). Самыми распространёнными легирующими примесями для кремния являются фосфор и мышьяк (позволяют получить n-тип проводимости) и бор (p-тип).

Симметричные и несимметричные p-n-переходы

В зависимости от степени легирования (концентрации донорной и акцепторных примесей), различают симметричные и несимметричные p-n-переходы. В симметричных переходах концентрация носителей в областях полупроводника почти одинакова. В несимметричных переходах концентрации могут различаться во много раз

Способы легирования

В настоящее время технологически легирование производится тремя способами: ионная имплантация, нейтронно-трансмутационное легирование (НТЛ) и термодиффузия.

Ионная имплантация позволяет контролировать параметры приборов более точно, чем термодиффузия, и получать более резкие p-n-переходы. Технологически проходит в несколько этапов:

  • Загонка (имплантация) атомов примеси из плазмы (газа).
  • Активация примеси, контроль глубины залегания и плавности p-n-перехода путём отжига.

Ионная имплантация контролируется следующими параметрами:

  • доза — количество примеси;
  • энергия — определяет глубину залегания примеси (чем выше, тем глубже);
  • температура отжига — чем выше, тем быстрее происходит перераспределение носителей примеси;
  • время отжига — чем дольше, тем сильнее происходит перераспределение примеси.

При нейтронно-трансмутационном легировании легирующие примеси не вводятся в полупроводник, а образуются («трансмутируют») из атомов исходного вещества (кремний, арсенид галлия) в результате ядерных реакций, вызванных облучением исходного вещества нейтронами. НТЛ позволяет получать монокристаллический кремний с особо равномерным распределением атомов примеси. Метод используется в основном для легирования подложки, особенно для устройств силовой электроники.

Когда облучаемым веществом является кремний, под воздействием потока тепловых нейтронов из изотопа кремния 30Si образуется радиоактивный изотоп 31Si, который затем распадается с образованием стабильного изотопа фосфора 31P. Образующийся 31P создаёт проводимость n-типа.

В России возможность нейтронно-трансмутационного легирования кремния в промышленных масштабах на реакторах АЭС и без ущерба для производства электроэнергии была показана в 1980 году. К 2004 году была доведена до промышленного использования технология по легированию слитков кремния диаметром до 85 мм, в частности, на Ленинградской АЭС.

Термодиффузия содержит следующие этапы:

  • Осаждение легирующего материала.
  • Термообработка (отжиг) для загонки примеси в легируемый материал.
  • Удаление легирующего материала.

 

4. P – N переход. Прямое и обратное включение.

p-n (пэ-эн) переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому, такой переход ещё называют электронно — дырочным переходом.

Всего есть два типа полупроводников это p и n типа. В n — типе основными носителями заряда являются электроны, а в p — типе основными — положительно заряженные дырки. Положительная дырка возникает после отрыва электрона от атома и на месте него образуется положительная дырка.

При использовании p-n-перехода в реальных полупроводниковых приборах к нему может быть приложено внешнее напряжение. Величина и полярность этого напряжения определяют поведение перехода и проходящий через него электрический ток. Если положительный полюс источника питания подключается к p-области, а отрицательный – кn-области, то включениеp-n-перехода называют прямым. При изменении указанной полярности включениеp-n-перехода называют обратным.

При прямом включении p-n-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю, рисунок 1. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.

Рисунок 1 – Прямое включение p-n-перехода

Повышенная диффузия носителей зарядов через переход приводит к повышению концентрации дырок в области n-типа и электронов в области p-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновныхносителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым.

При включении p-n-перехода в обратном направлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя, рисунок 2. Все это уменьшает диффузионные токи основных носителей. Для неосновных носителей поле в p-n-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется.

Рисунок 2 – Обратное включение p-n-перехода

Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремится к предельному значению IS, которое называется током насыщения. Чем больше концентрация примесей доноров и акцепторов, тем меньше ток насыщения, а с увеличением температуры ток насыщения растет по экспоненциальному закону.

 

 

5. Схемы выпрямления однополупериодная и двухполупериодная.

Выпрямление электрических колебаний, это процесс, в результате которого переменное входное колебание преобразуется в выходное колебание только одного знака (рисунок 1.5). Процесс выпрямления используется в устройствах электропитания (блоках питания) и демодуляторах.

Выпрямление всегда осуществляется при использовании нелинейных элементов, обладающих свойством однонаправленного пропускания электрического тока. Благодаря таким свойствам на выходе выпрямляющего элемента получают ток одного знака.

Для выпрямления применяют полупроводниковые и вакуумные (кенотроны) диоды, газоразрядные диоды (газотроны), тиратроны, кремниевые и селеновые элементы, тиристоры и другие элементы с нелинейными свойствами в зависимости от применения,

значений выпрямленных напряжений и токов, отбираемых нагрузкой. В маломощных электронных устройствах для выпрямления чаще всего применяют полупроводниковые диоды.

Название “выпрямитель” используется, прежде всего, для схем, преобразующих переменный ток в постоянный. Выпрямителем называется также и сам элемент с однонаправленными свойствами, используемые в процессе выпрямления.

Однополупериодным выпрямителем называется такой выпрямитель, на выходе которого после процесса выпрямления остаются колебания одного знака. Схема однополупериодного выпрямителя, возбуждаемого синусоидальным сигналом, представлена на рисунке 1.6.

Диод, включенный таким образом, что приводит ток только при положительных полупериодах входного колебания, т.е. когда напряжение на его аноде больше потенциала катода. Среднее значение колебания, полученного в результате выпрямления синусоидального напряжения с действующим значением и максимальным значением , равно

Например, при выпрямлении напряжения с действующим значением , после выпрямления получаем напряжение .

В отрицательный полупериод диод не проводит ток, и все подведенное к выпрямителю напряжение действует на диоде как обратное напряжение выпрямителя. При изменение направления включения диода он будет проводить в отрицательные полупериоды и не проводить в положительные.

Рассматриваемая схема выпрямителя называется последовательной. Название связано с тем, что нагрузка включается последовательно с нелинейным элементом (вентилем).

Двухполупериодным выпрямителем называют такой выпрямитель, в котором после процесса выпрямления остаются участки входного колебания, имеющие один знак. К ним после изменения знака добавляются участки, имеющие противоположный знак.

Принципиальная схема двухполупериодного выпрямителя, управляемого синусоидальным сигналом от трансформатора, показана на рисунке 1.7.

В периоды времени, когда на аноде диода Д1 действует положительное напряжение, на аноде диода Д2 присутствует отрицательное и наоборот. Это происходит потому, что средняя точка вторичной обмотки трансформатора заземлена, и, следовательно, она имеет нулевой потенциал. При положительной полуволне напряжения на вторичной обмотке диод Д1 пропускает ток, а диод Д2 не пропускает. При отрицательной полуволне положительное напряжение действует на диоде Д2, который при этом проводит, а диод Д1, смещенный в обратном направлении, не проводит. Среднее значение напряжения, полученного на выходе двухполупериодного выпрямителя в 2 раза больше напряжения, полученного на выходе однополупериодного выпрямителя.

 

6. Полупроводниковые диоды и их краткая характеристика.

Для контроля направления электрического тока необходимо применять разные радио и электро детали. В частности, современная электроника использует с такой целью полупроводниковый диод, его применение обеспечивает ровный ток.

Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц. Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами. Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.

Для создания полупроводниковых диодов используются германий и селен, как и более 100 лет назад. Их структура позволяет использовать детали для улучшения электронных схем, преобразования переменного и постоянного тока в однонаправленный пульсирующий и для совершенствования разных устройств. На схеме он выглядит так:

Существуют разные виды полупроводниковых диодов, их классификация зависит от материала, принципа работы и области использования: стабилитроны, импульсные, сплавные, точечные, варикапы, лазер и прочие типы. Довольно часто используются аналоги мостов – это плоскостной и поликристаллический выпрямители. Их сообщение также производится при помощи двух контактов.

Основные преимущества полупроводникового диода:

  1. Полная взаимозаменяемость;
  2. Отличные пропускные параметры;
  3. Доступность. Их можно купить в любом магазине электро-товаров или снять бесплатно со старых схем. Цена начинается от 50 рублей. В наших магазинах представлены как отечественные марки (КД102, КД103, и т. д.), так и зарубежные.

Маркировка

Маркировка полупроводникового диода представляет собой аббревиатуру от основных параметров устройства. Например, КД196В – кремниевый диод с напряжением пробоя до 0,3 В, напряжением 9,6, модель третьей разработки.

Исходя из этого:

  1. Первая буква определяет материал, из которого изготовлен прибор;
  2. Наименование устройства;
  3. Цифра, определяющая назначение;
  4. Напряжение прибора;
  5. Число, которое определяет прочие параметры (зависит от типа детали).

Принцип работы

Полупроводниковые или выпрямительные диоды имеют довольно простой принцип работы. Как мы уже говорили, диод изготовлен из кремния таким образом, что один его конец p-типа, а другой конец типа n. Это означает, что оба контакта имеют различные характеристики. На одном наблюдается избыток электронов, в то время как другой имеет избыток отверстий. Естественно, в устройстве есть участок, в котором все электроны заполняют определенные пробелы. Это означает, что внешние заряды отсутствуют. В связи с тем, что эта область обедняется носителями заряда и известна как объединяющий участок.

Несмотря на то, что объединяющий участок очень мал, (часто его размер составляет несколько тысячных долей миллиметра), ток не может протекать в нем в обычном режиме. Если напряжение подается так, что площадь типа p становится положительной, а тип n, соответственно, отрицательной, отверстия переходят к отрицательному полюсу и помогают электронам перейти через объединяющий участок. Точно так же электроны движутся к положительному контакту и как бы обходят объединительный. Несмотря на то, что все частицы движутся с разным зарядом в разном направлении, в итоге они образуют однонаправленный ток, что помогает выпрямить сигнал и предупредить скачки напряжения на контактах диода.

Если напряжение прикладывается к полупроводниковому диоду в противоположном направлении, ток не будет проходить по нему. Причина заключается в том, что отверстия привлекаются отрицательным потенциалом, который находится в области р-типа. Аналогично электроны притягиваются к положительному потенциалу, который применяется к области n-типа. Это заставляет объединяющий участок увеличиваться в размере, из-за чего поток направленных частиц становится невозможным.

 

 

7. Выпрямительный диод и стабилитрон.

Выпрямительным диодом называется полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный в силовых цепях, то есть в источниках питания.










Последнее изменение этой страницы: 2018-05-10; просмотров: 1139.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...