Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Предел функции в точке и в бесконечности




1. Функция одной переменной. Определение предела функции в точке по Коши.Число bназывается пределом функции у = f(x) при х, стремящемся к а (или в точке а), если для любого положительного числа e существует такое положительное число d, что при всех х ≠ а, таких, что |xa | < d, выполняется неравенство
| f(x) – a | < e .

Определение предела функции в точке по Гейне. Число b называется пределом функции у = f(x) при х, стремящемся к а (или в точке а), если для любой последовательности {xn}, сходящейся ка (стремящейся к а, имеющей пределом число а), причем ни при каком значении n хnа, последовательность {yn = f(xn)} сходится к b.

Определения предела функции в точке по Коши и по Гейне эквивалентны: если число b служит пределом по одному из них, то это верно и по второму.

Указанный предел обозначается так:

Предел функции на бесконечности.Пусть задана функция у = f(x) с неограниченной сверху областью определения. Число b называется пределом данной функции при х, стремящемся к плюс бесконечности, если для любого числа существует такое положительное число М, что при всех значениях аргумента х из области определения, таких, что x > M, выполняется неравенство |f(x) – b| < e. Запись этого факта:

Если область определения данной функции неограниченна снизу, то число bназывается пределом данной функции при х, стремящемся к минус бесконечности, если для любого числа e < 0 существует такое положительное число М, что при всех значениях аргумента х из области определения, таких, что x < –M, выполняется неравенство |f(x) – b| < e. Записывается это так:

 

 

Основные теоремы о пределах       Замеча́тельныепреде́лы — термин, использующийся в советских и российских учебниках по математическому анализу для обозначения некоторых широко известных математических тождеств со взятием предела. Первый замечательный предел: Следствия   Второй замечательный предел:   Следствия для ,   Логарифм по основанию e называетсянатуральным логарифмом. Натуральный логарифм числа x обозначается ln x.  
функция f(x) называется непрерывной в точке х0, если 1. Она определена в точке х0 2. Существует конечный предел 3. Этот предел равен значению функции в точке х0. Иначе говоря, функция у=f(x) называется непрерывной в точке, если бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции, то есть Классификация точек разрыва функции Все точки разрыва функции разделяются на точки разрыва первого и второго рода. Говорят, что функция f (x) имеет точку разрыва первого рода при x = a, если в это точке
  • Существуют левосторонний предел и правосторонний предел ;
  • Эти односторонние пределы конечны.
При этом возможно следующие два случая:
  • Левосторонний предел и правосторонний предел равны друг другу:
Такая точка называется точкой устранимого разрыва.
  • Левосторонний предел и правосторонний предел не равны друг другу:
Такая точка называется точкой конечного разрыва. Модуль разности значений односторонних пределов называется скачком функции. Функция f (x) имеет точку разрыва второго рода при x = a, если по крайней мере один из односторонних пределов не существует или равен бесконечности.  
производная функции -это функция, которая отвечает за ее (функции ) возрастание и убывание.   1) Физический смыслпроизводной. Если функция y = f(x) и ее аргумент x являются физическими величинами, то производная – скорость изменения переменной y относительно переменной x в точке . Например, если S = S(t) – расстояние, проходимое точкой за время t, то ее производная – скорость в момент времени . Если q = q(t) – количество электричества, протекающее через поперечное сечение проводника в момент времени t, то – скорость изменения количества электричества в момент времени , т.е. сила тока в момент времени . 2) Геометрический смысл производной. Пусть – некоторая кривая, – точка на кривой . Любая прямая, пересекающая не менее чем в двух точках называется секущей. Касательной к кривой в точке называется предельное положение секущей , если точка стремится к , двигаясь по кривой. Из определения очевидно, что если касательная к кривой в точке существует, то она единственная Производной функции в точке называется величина  
Функция y=f(x) называется дифференцируемой в некоторой точке x0, если она имеет в этой точке определенную производную, т.е. если предел отношения существует и конечен. Если функция дифференцируема в каждой точке некоторого отрезка [а; b] или интервала (а; b), то говорят, что онадифференцируема на отрезке [а; b] или соответственно в интервале (а; b). Справедлива следующая теорема, устанавливающая связь между дифференцируемыми и непрерывными функциями. Теорема. Если функция y=f(x) дифференцируема в некоторой точке x0, то она в этой точке непрерывна. Таким образом,из дифференцируемости функции следует ее непрерывность. Доказательство. Если , то , где α бесконечно малая величина, т.е. величина, стремящаяся к нулю при Δx→0. Но тогда Δy=f '(x0) Δx+αΔx=> Δy→0 при Δx→0, т.е f(x) – f(x0)→0 при xx0, а это и означает, что функция f(x) непрерывна в точке x0. Что и требовалось доказать. Таким образом, в точках разрыва функция не может иметь производной. Обратное утверждение неверно: существуют непрерывные функции, которые в некоторых точках не являются дифференцируемыми (т.е. не имеют в этих точках производной). Рассмотрим на рисунке точки а, b, c. В точке a при Δx→0 отнош ение не имеет предела (т.к. односторонние пределы различны при Δx→0–0 и Δx→0+0). В точкеA графика нет определенной касательной, но есть две различные односторонние касательные с угловыми коэффициентами к1 и к2. Такой тип точек называют угловыми точками. В точке b при Δx→0 отношение является знакопостоянной бесконечно большой величиной . Функция имеет бесконечную производную. В этой точке график имеет вертикальную касательную. Тип точки – "точка перегиба" cвертикальной касательной. В точке c односторонние производные являются бесконечно большими величинами разных знаков. В этой точке график имеет две слившиесявертикальные касательные. Тип – "точка возврата" с вертикальной касательной – частный случай угловой точки.   Пусть функции u = u(x) и v = v(x) имеют производные в точке x0. Тогда в этой точке имеют производные их сумма, произведение и, при дополнительном условии v(x0) ≠ 0, их частное, причем:
   

 










Последнее изменение этой страницы: 2018-06-01; просмотров: 196.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...