Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ОСНОВНЫЕ ПОНЯТИЯ ОРГАНИЧЕСКОЙ ХИМИИ




Углерод конечно, нельзя отнести к числу наиболее распространенных химических элементов. В земной коре его всего лишь 0,12 %. Но от всех остальных элементов он отличается исключительным разнообразием химических соединений. Число известных в настоящее время соединений углерода более чем вдвое превышает количество соединений всех остальных элементов, вместе взятых.

Такое своеобразие углерода объясняется особыми способностями его атомов к образованию химических связей. Как правило углерод четырехвалентен. Его атомы могут присоединяться друг к другу с образованием более или менее длинных цепей а также колец. Остающиеся при этом свободные единицы валентности легко насыщаются водородом. В результате получаются углеводороды. С простейшим из них — метаном — мы уже познакомились. Следующий, более сложный углеводород называется этаном. Его молекула содержит два атома углерода и шесть атомов водорода. Присоединение третьего атома углерода и насыщение свободных валентностей водородом приводит к образованию пропана с формулой C3H8. Следующий углеводород с четырьмя атомами углерода называется бутаном и имеет состав С4Н10. Так же можно составить все более длинные углеродные цепи. Сейчас известны члены ряда с более чем 100 атомами углерода. Углеводороды от метана до бутана при нормальных условиях газообразны. Начиная с пентана у которого пять атомов углерода, они представляют собой жидкости. Соединения, содержащие 17 и больше атомов углерода, при комнатной температуре являются твердыми веществами.

Углеводороды метан, этан, пропан, бутан и т. д. образуют ряд соединений, очень близких друг к другу по строению и химическим свойствам. В таблице "Ряд алканов" указаны названия и формулы важнейших членов этого ряда. Очевидно, что каждое последующее вещество отличается по составу от предыдущего наличием дополнительной группы СН2. Новому общая формула углеводородов с п атомами углерода СnН2n+2. Таким образом, число атомов водорода в молекуле на 2 больше, чем удвоенное число атомов углерода. Эти два дополнительных атома водорода находятся по концам углеродной цепи. Такой ряд соединений называется гомологическим рядом. Названия отдельных членов приведенного ряда углеводородов оканчиваются суффиксом «ан», и все вместе они называются алканами.

Ряд алканов

Число атомов углерода Брутто-формула Название Число атомов углерода Брутто-формула Названия
1 CH4 Метан 7 C7H16 Гептан
2 C2H6 Этан 8 C8H18 Октан
3 C3H8 Пропан 9 C9H20 Нонан
4 C4H10 Бутан 10 C10H22 Декан
5 C5H12 Пентан п CnH2n+2 Алкан
6 C6H14 Гексан      

Жидкие и твердые алканы содержатся, главным образом, в нефти, а также в смоле, полученной из бурого угля. Алканы преимущественно с шестью — десятью атомами углерода, например октан, входят в состав бензина. Следующие за ними в ряду жидкие алканы — главная составная часть дизельного топлива и смазочных масел. Смесь твердых углеводородов этого ряда получила название парафин.

Известны алканы не только с прямой, но и с разветвленной углеродной цепью. Например, для углеводорода С4Н10 возможны два варианта строения:

Для следующего за ним углеводорода С5Н12 возможны уже три структуры:

 

ЭТЕН - НЕНАСЫЩЕННЫЙ УГЛЕВОДОРОД

В алканах все свободные валентности атомов углерода насыщены атомами водорода. Поэтому их называют еще насыщенными углеводородами, В отличие от них, ненасыщенные углеводороды содержат меньше водорода. Свободные валентности соседних атомов углерода взаимодействуют в них друг с другом и образуют двойные или тройные связи. В структурных формулах такие связи изображаются двумя или тремя черточками между соответствующими атомами углерода. Очевидно, что ненасыщенные углеводороды, если расположить их в порядке увеличения числа атомов углерода, тоже образуют гомологические ряды. Простейшие и в то же время наиболее важные в технике ненасыщенные углеводороды имеют в молекуле одну двойную или тройную связь. В первом случае они называются алкенами, а во втором - алкинами.

Первые представители этого ряда - этен (этилен) (Н2С=СН2) и этин (ацетилен) (НСºСН). Этен и этин являются важнейшими промежуточными продуктами в технологии органического синтеза. Оба эти газа в настоящее время производятся во всем мире в огромных количествах путем каталитической переработки углеводородов нефти. Кроме того, большое значение имеет способ получения этина из карбида кальция и воды.

Изучение свойств ненасыщенных углеводородов начнем с этена, который легко можно получить из спирта и серной кислоты.

Соберем простой прибор. Для этого понадобятся две пробирки. К одной из них подберем пробку с двумя отверстиями и вставим в нее изогнутую стеклянную трубку и термометр со шкалой до 250 °С. Все соединения должны быть достаточно плотными, чтобы образующийся газ мог выходить только через трубку.

В пробирку поместим 2 мл денатурированного спирта и осторожно, малыми порциями, добавим 5 мл концентрированной серной кислоты (только в защитных очках!). При этом смесь очень сильно разогреется, и мы сразу же почувствуем приятный запах - это выделяется этен, пока в малом количестве. Можно добавить в пробирку еще 1-2 г мелкого чистого песка, чтобы ускорить реакцию. Однако можно этого и не делать.

Во вторую пробирку нальем 5-10 мл 10%-ного раствора соды (карбоната натрия) и добавим несколько капель раствора перманганата калия. Раствор должен получиться интенсивно фиолетовым, но не слишком темным. Он называется реактивом Байера (В советской химической литературе способ определения строения непредельных соединений путем их окисления разбавленным раствором перманганата калия получил название реакции Вагнера. Эта реакция была открыта Е.Е. Вагнером в 1887 году и описана в «Журнале Русского физико-химического общества» за 1888 г., т. 20, стр. 72 – Прим. перев.)

Теперь соберем прибор и будем нагревать первую пробирку горелкой Бунзена до тех пор, пока термометр, погруженный в смесь спирта с серной кислотой, не покажет 150-170 °С.

По стеклянной трубке отводится газообразный этен (теперь мы легко узнаем его по приятному запаху). Пропустим его через реактив Байера. Вскоре раствор обесцветится и одновременно выделятся коричневые хлопья оксида марганца (IV).

Если найдется немного бромной воды, можно разбавить ее водой в соотношении 1:1 и через полученную бурую жидкость пропустить этен. (Осторожно! Пары брома действуют на глаза и дыхательные пути). (Об опасности работы с бромом см. стр. 218. Места, обожженные бромом, следует тщательно протереть бензином до отсутствия запаха брома, а затем втереть в кожу глицерин. Немедленно после ожога бром можно смыть также бензолом или 10 %–ным раствором тиосульфата (гипосульфита) натрия. Последний продается в магазинах фототоваров. – Прим. перев.)

Окраска бромной воды исчезнет. После этого можно поджечь этен, все еще выделяющийся из изогнутой стеклянной трубки. Он горит светящемся, слегка коптящим пламенем.

Ненасыщенные углеводороды, в противоположность насыщенным, легко вступают в химические реакции. Так, в нашем опыте этен окислялся кислородом из перманганата калия, а перманганат калия при этом восстанавливался. Так же, как правило, ведут себя по отношению к реактиву Байера и другие ненасыщенные углеводороды. Реакционная способность этих веществ объясняется тем, что их двойные или тройные связи расщепляются с образованием простых связей. При этом за счет свободных валентностей присоединяются атомы или группы атомов, например кислород или бром.

Уравнения реакций:

СН2=СН2 + ½ О2 + Н2О ® НО-СН2-СН2-ОН

СН2=СН2 + Br2 ® Br-CH2-CH2-Br

Применение этена и этина (ацетилена) в промышленности обусловлено тем, что, в отличие от алканов, они обладают высокой реакционной способностью. Именно благодаря ей на основе этена и этина можно построить множество различных органических соединений.

 

ОБНАРУЖЕНИЕ ЭЛЕМЕНТОВ В ОРГАНИЧЕСКИХ ВЕЩЕСТВАХ

Большинство органических соединений состоит преимущественно из углерода и водорода. Уже знакомые нам углеводороды содержат только эти два элемента. В остальных же органических соединениях, со многими из которых мы познакомимся позже, содержатся еще один или несколько других элементов, чаще всего кислород, галогены (хлор, бром, йод), азот и сера.

Приведенные ниже простые опыты во многих случаях пригодны для качественного определения азота, галогенов и серы.



Обнаружение азота

Чтобы выяснить, есть ли в веществе азот, пробу греют в пробирке с избытком натронной извести. Если ее нет, можно заменить ее смесью гидроксида натрия (едкого натра) с избытком негашеной извести. Проследим только, чтобы в верхней части пробирки не осталось приставших частиц извести. Заткнем пробирку кусочком ваты, а на него положим увлажненную полоску красной лакмусовой бумаги. Пробирку нагреем на горелке Бунзена (маленьким пламенем) - сначала слабо, потом сильнее. Синее окрашивание индикаторной бумаги указывает на присутствие азота. Определение основано на том, что содержащийся в органических веществах связанный азот при нагревании с натронной известью (или еще по одному способу - с концентрированной серной кислотой) во многих случаях превращается в аммиак.

Обнаружение галогенов

Во многих случаях галогены в органических соединениях можно обнаружить с помощью пробы Бейльштейна. Возьмем не слишком тонкую медную проволоку без изоляции, зачистим ее и загнем один конец петелькой. В петле укрепим кусочек пористой керамики ("кипелку"). Прокалим этот конец проволоки в несветящейся зоне пламени горелки, пока не исчезнет зеленая окраска пламени. Затем погрузим петельку в исследуемую жидкость или поместим на нее пробу твердого вещества. Если теперь снова внести проволоку в несветящуюся зону пламени, то присутствие галогена обнаруживается по зеленому (иод) или голубовато-зеленому (хлор, бром) окрашиванию пламени. Правда, эта проба очень чувствительна. Поэтому часто галоген обнаруживается даже в том случае, когда исследуемое вещество загрязнено малым количество содержащей галоген примеси. Некоторые соединения (муравьиная и бензойная кислоты, различные неорганические вещества) мешают определению, так как они сами окрашивают пламя в зеленый цвет.

Обнаружение серы

Для обнаружения серы обычно прокаливают пробу с металлическим натрием. При этом сера переходит в сульфид, который обнаруживают с помощью нитропруссида натрия. Мы выберем другой способ, чтобы обойтись без труднодоступного и опасного натрия.

На кончике шпателя возьмем пробу исследуемого вещества и поместим ее в маленькую фарфоровую чашку. Добавим немного концентрированной или лучше дымящей азотной кислоты и сильно нагреем чашку. Делать это нужно в вытяжном шкафу или на открытом воздухе. При этом кислота улетучивается. К остатку еще раз добавим азотную кислоту и снова выпарим. Растворим остаток в воде и при необходимости отфильтруем раствор. Если в пробе исследуемого вещества содержалась сера, то при смешивании полученного раствора с раствором хлорида бария выпадет осадок нерастворимого сульфата бария.

 

С помощью этих реакций можно испытать на содержание азота, серы или хлора самые разнообразные органические вещества. Попробуйте исследовать, например, жидкость для выведения пятен, средства для борьбы с молью и другими вредителями, остатки лекарств в домашней аптечке, кусочек рыбы, образцы шерсти, различных пластмасс и т. д.

Кислород в органических соединениях, как правило, определяется косвенным методом. Для этого находят процентное содержание всех остальных элементов и вычитают его из 100%. Основателем количественного анализа соединений углерода - элементного анализа - был Либих (1803 - 1873). С тех пор элементный анализ непрерывно совершенствовался и в наши дни достиг высокого уровня. Сейчас можно точно определить процентное содержание различных элементов при наличии лишь 1 мг вещества. Благодаря этому удалось выяснить состав очень редких природных веществ, например гормонов, стимуляторов роста и красителей, придающих окраску бабочкам.

Зная состав исследуемого вещества и определив его молекулярную массу, можно установить брутто-формулу. В конечном счете цель химика-органика состоит в том, чтобы точно выяснить структурную формулу, т. е. установить строение. Для этого он должен обстоятельно изучить химические свойства вещества, то есть его поведение по отношению к различным реагентам. Необходимо исследовать продукты его превращений - расщепления, термического разложения и т. д. Часто для того, чтобы надежно установить строение сложного соединения, необходима упорная работа в течение многих лет (Примером может служить почти двадцатилетняя работа (с 1865 по 1883 г) выдающегося немецкого химика Байера с сотрудниками, в результате которой удалось выяснить строение природного красителя индиго. В последние годы наряду с классическими методами все большее значение приобретают новые, обычно менее трудоемкие, физические методы установления строения органических соединений. Для ознакомления с достоинствами и недостатками тех и других методов рекомендуем прочитать статью В.Р.Полищука «Состязание с Адольфом Байером» в журнале «Химия и жизнь» № 9 за 1972 год – Прим. перев.) Для многих известных соединений углерода эта задача не решена до сих пор.

В настоящее время успешно расшифрованы очень сложные структуры белков и нуклеиновых кислот. Последние играют важную роль в передаче наследственных признаков и воспроизведении белков. Например, удалось не только выяснить точное строение, но и полностью осуществить синтез сложного белка - инсулина, недостаток которого, как известно, приводит к сахарной болезни. Выяснение точного расположения органических оснований в гигантских молекулах дезоксирибонуклеиновой кислоты (ДНК) дает ключ к познанию механизма передачи генетической информации. Таким образом, стирается граница между органической химией и биологией клетки. Возникшая на стыке наук молекулярная биология в будущем, несомненно, позволит сознательно изменять наследственные признаки биологических объектов.

 

УГОЛЬ - КОКС - СМОЛА - ГАЗ

Уголь в том состоянии, в каком он находится в природе, не годится для непосредственного использования в химической промышленности. Его нужно предварительно облагородить, превратив в как можно более чистые углерод и углеводороды.

Один из самых крупных потребителей угля - металлургия. В доменных печах уголь служит одновременно топливом и восстановителем для оксидных руд. Но при использовании только что добытого (так называемого сырого) каменного или бурого угля печи загрязнялись бы смолой. Поэтому раньше для выплавки чугуна применяли только очень чистый древесный уголь. Лишь к началу XIX в. научились коксовать каменный уголь и использовать в доменном процессе получаемый кокс.

Химической промышленности для получения углеводородов и других органических соединений нужны кокс, смола (побочный продукт коксования) и газы, получаемые при коксовании угля. Коксовые газы служат, кроме того, ценным горючим. Об этом свидетельствует, в частности, и наш повседневный опыт использования, газа в быту.

Германская Демократическая Республика располагает очень богатыми запасами бурого угля, тогда как каменный уголь ей приходится большей частью покупать за рубежом. Поэтому коксохимическая промышленность ГДР основана, главным образом, на переработке бурого угля.

Сырой бурый уголь содержит 45-55 % воды. Он не годится на топливо, поскольку при его сжигании большая часть тепловой энергии бесполезно расходуется на испарение воды. При высушивании на воздухе содержание воды в угле понижается до 15-20 %, а брикеты бурого угля содержат воды еще меньше - от 10 до 18 %. Сырой уголь поступает на переработку только в виде брикетов.

В результате сухой перегонки, то есть при нагревании без доступа воздуха с улавливанием выделяющихся летучих веществ, брикеты превращаются в кокс, смолу и газ. Применяются два способа такой переработки бурого угля. Первый, более старый способ, при котором бурый уголь нагревают только до 500-600 °С называется полукоксованием. При таких условиях ценные углеводороды улетучиваются. Остаток – полукокс - получается недостаточно прочным и поэтому непригоден для металлургии. Его перерабатывают с целью получения углеводородов. В отличие от полукоксования, способ высокотемпературного коксования, разработанный химиками Билкенротом и Раммлером, позволяет производить такой кокс, который можно использовать для выплавки чугуна в специальных низкошахтных печах.

Наряду с использованием в металлургии буроугольный высокотемпературный кокс все шире применяют в других отраслях промышленности в качестве ценного сырья и топлива.

Коксование каменного угля и высокотемпературное коксование бурого угля требуют температур порядка 1000°С и более. Поэтому провести такой опыт нам не удастся. Но мы можем осуществить полукоксование бурого угля. Можно провести и сухую перегонку древесины, которая, хотя и ограниченно, но еще применяется в промышленности ГДР (В СССР в 70-е годы сухой перегонке (пиролизу) подвергалось около 7 млн м3 древесины в год, главным образом с целью получения древесного угля и древесной смолы, причем масштабы производства возрастали – Прим. перев.). С нее мы и начнем, потому что этот опыт проще. Кроме того, перегонка древесины позволит нам лучше разобраться в сущности других, сходных с ней процессов.

 

ПОСТРОИМ УСТАНОВКУ ПОЛУКОКСОВАНИЯ

Сухую перегонку древесины и полукоксование бурого угля можно провести с очень малыми количествами веществ - даже в пробирке. Таким образом, с основами процесса можно ознакомиться при наличии хотя бы самого простого оборудования. В этом случае нам понадобится установка для перегонки.

Однако, чтобы дистиллята хватило для дальнейшей работы, сосуд для перегонки должен быть не менее 1 л. Таким образом, прежде всего нам нужно достать и приспособить для работы подходящий сосуд. Лучше всего подойдет металлическая реторта, которая может оказаться в школьной химической лаборатории. Но можно использовать и любой другой закрытый стальной сосуд - лишь бы в нем было отверстие, закрывающееся не слишком большой пробкой. Годятся, например, сварные сосуды из листового железа, маленькие газовые баллоны, не очень длинные обрезки труб с заваренным дном или жестяные банки. Можно даже взять старый эмалированный кофейник. В крышке его надо просверлить отверстие и подобрать к нему пробку. Кроме того, придется попросить сварщика наглухо приварить крышку к корпусу.

Если постараться, наверняка можно найти что-нибудь подходящее среди металлолома или отходов механической мастерской. Вероятно, в этом смогут помочь и на том предприятии, где вы проходите производственную практику.

Подобранный сосуд перед первым опытом нужно тщательно отмыть горячей водой, отскрести ершом и песком, так как остатки бензина или других горючих жидкостей могут во время опыта внезапно привести к пожару. Чтобы избежать опасности, вначале проверим также сосуд на устойчивость к нагреванию. Сильным пламенем - на плите или паяльной грелкой - нагреем его до красного каления (оттенок должен быть темно-красным). Если после этого в сосуде не появится трещин и герметичность швов не нарушится, то он годится в качестве перегонного куба.

Затем подберем к отверстию сосуда подходящую пробку. В нее нужно вставить стеклянную трубку, по которой будут отводиться летучие продукты перегонки. Пробка должна быть достаточно устойчивой к высокой температуре. Сосуд типа баллона лучше всего закрыть резиновой пробкой, а нижнюю поверхность ее защитить от нагревания шайбой - металлической или из асбестового картона. В шайбе, конечно, должно быть отверстие для стеклянной трубки - такого же диаметра, как и в пробке. Кроме того, чтобы защитить боковую поверхность, соприкасающуюся с раскаленным металлом, пробку нужно обмотать тонкой полоской из листового алюминия или другого мягкого и устойчивого к нагреванию до 500 °С материала.

Если отверстие перегонного куба шире, чем у баллона, например когда используется обрезок трубы, запаянный с одного конца, то можно закрыть его тщательно подогнанной деревянной пробкой конической формы. Такую пробку нетрудно сделать самому. Нижнюю поверхность ее тоже необходимо защитить асбестовой шайбой, а боковую - обмоткой. Правда, одну и ту же деревянную пробку удастся использовать лишь несколько раз. Перед каждым опытом ее придется подгонять к отверстию, осторожно постукивая по ней молотком. Стеклянную трубку нужно уплотнить в отверстии деревянной пробки с помощью кусочка резинового шланга.

Некоторые читатели, вероятно, смогут предложить и свои собственные усовершенствования. Но в любом случае необходимо вначале проверить полностью собранную установку, чтобы исключить возможность утечки горючих газов и паров в тех местах, где соединения недостаточно надежны. Для этого проведем "холостой опыт", т. е. опыт с пустым, не заполненным углем или древесиной перегонным кубом.

В качестве перегонного куба в крайнем случае годится колба из тугоплавкого стекла, но ее можно нагревать только до 500 °С. Кроме того, после опыта колба настолько загрязнится, что ее едва ли удастся хорошо отмыть.

Теперь нам понадобится мощный источник тепла, позволяющий нагреть куб до требуемой температуры. Процесс осуществляется полностью только при температуре около 500 °С, то есть при нагревании железа до красного каления. В крайнем случае можно нагревать до 350-400 °С, однако при этом процесс происходит лишь частично. Тепла, которое дает обычная горелка Бунзена, для этого не хватит, потому что оно расходуется на всю относительно большую поверхность перегонного куба. Стальной сосуд вместимостью около 1 л можно довести до требуемой температуры хотя бы в нижней его части путем длительного нагревания на кухонной газовой плите как можно более сильным пламенем. Можно нагревать и паяльной горелкой – в начале при полностью открытом подводе газа без подачи воздуха, а затем большим пламенем при умеренной поступлении воздуха. Наконец, подойдет и плита, которую топят углем. В этом случае тоже необходимо сильно нагревать сосуд непосредственно голым пламенем. Если сосудом для полукоксования служит стеклянная колба, то рекомендуется поставить ее в большую кастрюлю, дно которой покрыто слоем песка высотой около 1 см. Тогда колба не должна разбиться.

В качестве холодильника лучше всего взять обыкновенную, не слишком тонкую стеклянную трубку, плотно обвитую спиралью из тонкой свинцовой трубки. Через свинцовый змеевик во время опыта нужно непрерывно пропускать воду.

Ни холодильник Либиха (прямой), ни шариковый холодильник применять в установке для полукоксования не стоит: они так сильно загрязнятся, что их потом не отмыть. По той же причине в качестве приемника возьмем не слишком дорогую широкогорлую коническую колбу (колбу Эрленмейера) или молочную бутылку на 250 мл. Закроем приемник резиновой пробкой с двумя отверстиями. В одно из них должна входить охлаждаемая стеклянная трубка, выходящая из перегонного куба. В другое отверстие вставим более тонкую, согнутую под прямым углом стеклянную трубку для отвода горючих газов и паров.

Приемник поместим в баню, через которую во время опыта будем все время пропускать холодную воду. Теперь, когда все приготовления закончены - для этого, разумеется, пришлось потрудиться - приступим к первому опыту.

 

Сухая перегонка древесины

Лучшая древесная смола получается из как можно более сухой буковой древесины. Из других лиственных пород образуются более или менее подобные продукты, тогда как древесина хвойных пород из-за высокого содержания в ней природной смолы дает при перегонке смолу несколько иного состава.

Лучше всего нам удастся воспроизвести перегонку буковой древесины в промышленности, если мы возьмем тщательно высушенные куски дерева из старой мебели. Попробуем, например, использовать для этой цели остатки старого прабабушкиного комода, который отец только что разломал и выбросил. Кусок дерева измельчим - расколем и распилим его на кубики с длиной ребра около 1 см или щепки размером 1,5-2 см - и заполним ими свой перегонный куб.

Теперь соберем установку и включим нагрев и охлаждение. Уже через довольно короткий промежуток времени, осторожно вдыхая пары, мы почувствуем на выходе из трубки для отвода газа специфический запах паленой древесины. Этот запах, пожалуй, нельзя назвать неприятным. Вскоре в приемнике появляются первые капли дистиллята. Из отводной трубки выходят только газы [в основном, диоксид углерода (углекислый газ) и метан]. Если поднести к отверстию этой трубки горящую спичку, их можно поджечь. В дальнейшем коксовые газы будут все время гореть сами светящимся пламенем. Поскольку они имеют сильный запах и содержат диоксид углерода, помещение необходимо все время хорошо проветривать.

Перегонка занимает не менее часа. В конце опыта нужно нагревать очень сильно, чтобы древесина обуглилась полностью. В это время отгоняется, в основном, древесная смола, образующая в приемнике белый дым. Дистиллят расслаивается на коричневатую водную жидкость в смолу. Когда перегонка прекратится, закончим опыт. Перегонный куб откроем только после охлаждения, потому что сильно нагретый древесный уголь при соприкосновении с воздухом легко самовоспламеняется.

Из 100 г древесины получается около 35 г древесного угля и 45 мл дистиллята, а остальная часть древесины превращается в газы.

Разотрем древесный уголь в порошок и насыплем в склянку. Он еще пригодится нам для обесцвечивания растворов. Именно так его используют и в промышленности, прежде всего в производстве сахара.

Из дистиллята выделим древесную смолу (деготь). Для этого после отстаивания осторожно отделим и отфильтруем водный слой. При испытании лакмусовой бумажкой он обнаруживает сильнокислую реакцию. Это объясняется присутствием в нем 10-12 % уксусной кислоты. Именно поэтому полученное вещество называют древесным уксусом. Кроме того, в нем содержатся метанол - от 2 до 4 %, малое количество ацетона (пропанона) и другие вещества. Состав древесной смолы очень сложен. Она находит разнообразное применение, например, ею смолят лодки и пропитывают древесину (железнодорожные шпалы, деревянные бруски для покрытия проезжей части мостов и т. д.) с целью защиты от гниения. Перегонкой можно разделить древесную смолу на жидкое креозотовое масло и древесный пек, которые тоже используются в народном хозяйстве. Например, колбасы при обработке парами креозота "коптятся" и тем самым предохраняются от порчи.

Березовый деготь служит для пропитки натуральной кожи и придает ей своеобразный запах.

Для дальнейшей переработки нальем древесный уксус в колбу и соединим ее с дефлегматором. В верхнее отверстие дефлегматора вставим термометр для измерения температуры паров, а отводную трубку соединим с холодильником, необходимым для конденсации паров. Можно взять холодильник Либиха или снова стеклянную трубку с наружным свинцовым змеевиком. Осторожно нагреем колбу на водяной бане. Приемником вначале может служить маленькая пробирка. При 80-85 °С медленно отгоняется несколько капель прозрачной жидкости. Она состоит преимущественно из ядовитого метанола, который кипит уже при 64,7 °С, малого количества ацетона и других веществ. Плотно закроем пробирку пробкой - полученный "древесный спирт" нам еще понадобится.

Когда при 85 °С ничего уже больше не отгоняется, уберем водяную баню и остаток в колбе на асбестированной сетке нагреем горелкой Бунзена до кипения. Через некоторое время отгоняется вода и уксусная кислота, а растворенные в древесном уксусе составные части смолы (фенолы, креозот) остаются. Когда отгонится приблизительно три четверти жидкости, закончим перегонку. К дистилляту будем понемногу добавлять известь до тех пор, пока он не перестанет окрашивать лакмусовую бумажку в красный цвет. При этом известь реагирует с уксусной кислотой с образованием хорошо растворимого этаната (ацетата) кальция, то есть кальциевой соли уксусной кислоты. Раствор профильтруем и осторожно упарим до получения упомянутой соли в виде серого порошка. Слишком сильно нагревать нельзя, потому что иначе этанат кальция преждевременно разложится. В технике эту соль называют серым древесноуксусным порошком. Сохраним этанат кальция и позднее используем его для получения уксусной кислоты и ацетона. Кто не хочет предварительно перегонять древесный уксус, может сразу нейтрализовать его известью и упарить. В этом случае полученный порошок будет довольно сильно загрязнен фенолами.

В промышленности уксусную кислоту сейчас уже не выделяют обходным путем через ее кальциевую соль, а непосредственно извлекают органическими растворителями, которые не смешиваются с водой. При встряхивании с таким растворителем уксусная кислота из водного раствора переходит в слой добавленного растворителя.

 

Полукоксование бурого угля

В следующем опыте заполним сосуд для коксования кусочками бурого угля размером в горошину - для этого надо измельчить брикеты. По возможности будем нагревать еще сильнее, чем при сухой перегонке древесины. В остальном же опыт полностью сходен с предыдущим. Вскоре появится характерный запах коксующегося угля. Так же как и в предыдущем опыте, газы можно сначала поджечь, а потом они будут гореть сами. Наряду с метаном, диоксидом углерода и аммиаком (в присутствии аммиака можно убедиться с помощью стеклянной палочки, предварительно погруженной в концентрированную соляную кислоту) они содержат малое количество ядовитого оксида углерода.

В приемнике собирается коричневатая жидкость - подсмольная вода, коричневато-черная смола и сырой парафин. Последний осаждается на стенках приемника желто-коричневатым слоем. Из 250 г бурого угля получается 15-25 г смолы и сырого парафина и около 40 мл подсмольной воды.

Сосуд для коксования мы и на этот раз откроем только когда он совсем остынет, чтобы предотвратить возможное самовоспламенение. В сосуде остается так называемый буроугольный полукокс. Как мы уже знаем, в отличие от каменноугольного кокса и буроугольного высокотемпературного кокса, он хрупок и поэтому не годится для выплавки чугуна. Однако это превосходное топливо, используемое в специальных печах для отопления помещений, а также на электростанциях. Кроме того, в газогенераторах Винклера из него получают газы, применяемые в химическом синтезе и в качестве топлива.

Дистиллят с помощью декантации разделим на подсмольную воду и смесь смолы с парафином, которую можно выскрести ложкой.

В подсмольной воде, которую мы используем для следующих опытов, содержатся, прежде всего, фенолы. Добавив к ней двойной объем этанола (годится и денатурат), можно в значительной мере отделить фенолы, так как они, в отличие от углеводородов, хорошо растворяются в спирте. В оставшейся мягкой массе наряду с небольшим количество спирта содержатся, в основном, жидкие и твердые углеводороды парафинового ряда (алканы). Фракционированной перегонкой из нее можно получить бензин, среднее масло, мягкий и твердый парафин. Можно использовать эту смесь и без предварительного разделения. Позднее мы будем окислять ее с целью получения жирных кислот.

Итак, как мы уже убедились, полукоксование и коксование бурого угля при высокой температуре дают горючие газы, смолу и полукокс или, соответственно, высокотемпературный кокс.

Несмотря на огромные объемы современных коксовых печей, коксовых газов явно не хватает для того, чтобы полностью обеспечить горючим газом промышленность. Поэтому на многих предприятиях, где перерабатывается уголь, из него в результате неполного окисления получают так называемый воздушный, или генераторный газ:

C + 1/2O2 = CO;                                                            Q = 122,67 кДж (29,3 ккал)

Этот газ, который, разумеется, содержит и неизмененный азот воздуха, затем сжигают:

CO + 1/2O2 = CO2;                                                      Q = 283,45 кДж (67,7 ккал)

Неполное сгорание угля с образованием оксида углерода - "угарного газа", СО - независимо от нашего желания всегда может происходить в любой печи, если она не вовремя закрыта. Угарный газ очень ядовит, отравление им приводит к несчастным случаям.

В промышленности сырой бурый уголь или полукокс газифицируют в крупных газогенераторах. В наши дни для этого применяются аппараты непрерывного действия. В той зоне газогенератора, куда подается воздух, вначале уголь сгорает полностью с образованием диоксида углерода СО2. В расположенном выше слое угля, нагретом сверх 1000 °С, СО2 вследствие недостатка кислорода восстанавливается до СО. Весь процесс в целом происходит самопроизвольно, так как неполное сгорание углерода по приведенному выше уравнению тоже осуществляется с выделением тепла. Этого тепла достаточно для того, чтобы поддерживалась требуемая высокая температура угля. Напротив, образование водяного газа требует дополнительного подвода тепла. Водяной газ образуется при действии водяного пара на раскаленный уголь:

C + H2O = CO + H2;                                                            Q=-221,06 кДж (-52,8 ккал)

Водяной газ в настоящее время производится тоже, в основном, на установках непрерывного действия, причем благодаря подаче чистого кислорода часть угля сгорает, так что общий тепловой эффект положителен. Водяной газ - это смесь оксида углерода с водородом, которая может содержать и диоксид углерода. Для обычного отопления водяной газ слишком дорог. Ввиду высокой теплоты сгорания его применяют для получения очень высоких температур (для сварки), а также в качестве ценной добавки к бытовому газу. Водяной газ служит одним из важнейших видов сырья в промышленном органическом синтезе. В качестве так называемого синтез-газа он применяется для получения бензина и метанола. Кроме того, из водяного газа получают водород для синтеза аммиака.

 

КАРБИД ВСЕ ЕЩЕ НУЖЕН

Все мы знакомы с карбидом кальция. При действии воды он образует горючий газ, используемый для так называемой автогенной сварки. В былые времена газовые лампы, заряженные карбидом, использовались в велосипедных фонарях и даже в мотоциклах и автомобилях. Сейчас такие лампы стали музейными экспонатами.

Формула карбида кальция - СаС2. Он образуется из негашеной извести и кокса при температуре порядка 2000 °С:

CaO + 3C = CaC2 +CO






Получение карбида кальция

В химическом кружке при наличии маленькой электродуговой печи, а также требуемого источника тока можно получить немного карбида кальция. В маленький графитовый тигель или в углубление, выдолбленное в толстом угольном электроде, поместим смесь равных (по массе) количеств оксида кальция (негашеной извести) и кусочков кокса размером с булавочную головку. Избыточный уголь при действии кислорода воздуха сгорит. Схема опыта показана на рисунке.

Верхний электрод приведем в соприкосновение со смесью, создавая электрическую дугу. Смесь проводит ток благодаря кусочкам угля. Пусть дуга горит 20-30 минут при наибольшем возможном токе. Глаза нужно защитить от яркого света очками с очень темными стеклами (очки для сварки).

После остывания смесь превращается в расплав, который, если опыт прошел успешно, содержит маленькие кусочки карбида. Чтобы проверить это, полученную массу поместим в воду и соберем образующиеся пузырьки газа в пробирке, перевернутой вверх дном и заполненной водой.

Если же электродуговой печи в лаборатории нет, то легко можно получить газ из имеющегося в продаже карбида кальция. Заполним газом несколько пробирок - полностью, наполовину, на одну треть и т. д. Заполнять газом более широкие сосуды, например стаканы, нельзя, потому что вода вытечет из них, и в стаканах получатся смеси газа с воздухом. При их воспламенении, как правило, происходит сильный взрыв.

Карбид кальция взаимодействует с водой по уравнению:

CaC2 + 2H2O = Ca(OH)2 +C2H2

Наряду с гидроксидом кальция (гашеной известью) эта реакция приводит к образованию этина - ненасыщенного углеводорода с тройной связью. Благодаря этой связи этин проявляет высокую реакционную способность.

 

Исследование этина

Докажем присутствие в этине (ацетилене) ненасыщенной связи с помощью реактива Байера или бромной воды. Для этого поместим реактив в пробирку и пропустим через него этин. Его мы получим в другой пробирке из нескольких кусочков карбида кальция. Эту пробирку закроем резиновой пробкой с двумя отверстиями. В одно из них заранее вставим стеклянную трубку с изогнутым концом - он должен быть погружен в пробирку с реактивом. В другое отверстие вставим капельную воронку и кран ее вначале закроем. Можно взять вместо нее и простую стеклянную воронку, заменив кран зажимом, как при получении метана. В воронку нальем воду и, осторожно приоткрывая кран, будем медленно, по каплям, добавлять ее к карбиду. Ввиду взрывоопасности этина проведем опыт вблизи от открытого окна или в вытяжном шкафу. Вокруг ни в коем случае не должно быть открытого пламени или включенных нагревательных приборов.

Этин в чистом состоянии представляет собой газ со слегка одурманивающим запахом. Этин, полученный из технического карбида, всегда загрязнен неприятно пахнущими ядовитыми примесями фосфористого водорода (фосфина) и мышьяковистого водорода (арсина). Смеси этина с воздухом, содержащие от 3 до 70 % этина, взрывоопасны. Этин очень легко растворяется в ацетоне. В виде такого раствора его можно хранить и перевозить в стальных баллонах (Чистый этин почти не обладает запахом. Смеси его с воздухом взрываются от искры в более широком интервале концентраций этина – от 2,3 до 80,7 %. – Прим. перев.).

Этин можно превратить в очень многие соединения, которые, в частности, приобрели большое значение для производства пластмасс, синтетического каучука, лекарств и растворителей. Например, при присоединении к этину хлористого водорода образуется винилхлорид (хлористый винил) - исходное вещество для получения поливинилхлорида (ПВХ) и пластмасс на его основе. Из этина же получают этаналь, с которым мы еще познакомимся, а из него - многие другие продукты.

 

В ГДР самым крупным производителем и одновременно потребителем этина является комбинат синтетического бутадиенового каучука в Шкопау. Почта 90 % из 400 продуктов этого гигантского предприятия получается полностью или частично из этина. Кроме того, большие количества карбида кальция выпускают азотный завод в Пистерице и электрохимический завод в Гиршфельде. В 1936 г. на территории, где ныне находится ГДР, производилось 206000 т карбида. В 1946 г. производство снизилось до 30000 т, но уже в 1951 г. повысилось до 678 000 т, а в 1955 г. превысило 800 000 т. С 1972 г. только упомянутый комбинат синтетического каучука получает ежегодно более 1 млн. т. карбида.

Эти цифры свидетельствуют об огромном значении карбида кальция и связанных с ним процессов.

 

В будущем технология, основанная на применении карбида, станет все больше вытесняться более выгодным нефтехимическим производством, созданным в ГДР в Шведте и Лёйне-2. Главным недосгатком карбидного метода получения этина является исключительно большой расход электроэнергии. В самом деле, на комбинате в Щкопау только одна современная карбидная печь «съедает» от 35 до 50 мегаватт. А ведь там работают целые батареи таких печей! На производство карбида кальция в ГДР тратится более 10% всей добываемой электроэнергии.

 

НЕКОТОРЫЕ ИЗ 800000 СОЕДИНЕНИИ

Молодой немецкий химик, профессор Фридрих Вёлер в 1828 г. впервые получил органическое соединение – мочевину - путем синтеза из неорганических исходных веществ. В середине прошлого века шведский химик Якоб Берцелиус синтезировал уже более 100 различных органических соединений. (Нельзя не упомянуть здесь и других основоположников органического синтеза. В 1842 г. русский химик Н. Н. Зинин впервые синтезировал анилин, который раньше получали только из растительного сырья. В 1845 г. немецкий химик Кольбе синтезировал уксусную кислоту, в 1854 г. француз Бертло— жиры, в 1861 г. А. М. Бутлеров — сахаристое вещество. Интересные сведения о жизни и деятельности этих ученых содержатся, в частности, в книге К. Манолова «Великие химики». Т. 1 и 2. Пер. с болг. (М., Изд. «Мир», 1976), — Прим. перев.)

С тех пор тысячи химиков во всех странах в результате настойчивого и тяжелого труда создали или выделили из природных источников множество новых органических веществ. Они исследовали их свойства и опубликовали результаты своих работ в научных журналах.

К началу XX в. было исследовано уже около 50 000 различных органических соединений, большей частью полученных путем синтеза. К 1930 г. число их выросло до 300000, а в настоящее время число полученных в чистом виде и не следованных органических соединений, по-видимому, намного превышает 800 000. Тем не менее возможности еще далеко не исчерпаны. Каждый день во всем мире находят и исследуют все новые и новые вещества.

Большинство органических соединений не нашло практического применения. Многие из них знакомы по личному опыту лишь очень узкому кругу химиков. Несмотря на это, затраченный труд был отнюдь не напрасным, так как некоторые вещества оказались ценными красителями, лекарствами или материалами нового типа. Нередко бывает, что вещество, которое известно уже несколько десятков лет и давно описано в научной литературе, неожиданно приобретает большое практическое значение. Например, недавно открыта активность некоторых сложных соединений по отношению к насекомым-вредителям. Вполне вероятно, что и другие соединения, которые до сих пор упоминаются только в старых, покрытых пылью научных журналах, в ближайшее же время найдут применение как красители, лекарственные средства или в какой-либо другой области. Не исключено даже, что они приобретут исключительное значение в народном хозяйстве.

Теперь самостоятельно получим и исследуем несколько веществ, особенно важных в промышленности.

 










Последнее изменение этой страницы: 2018-05-10; просмотров: 283.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...