Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Симметрирование скрещиванием




 

При прямом соединении жил в кабеле электромагнитные связи складываются, a при скрещивании − вычитаются. B кабелях связи конструктивные неоднородности носят случайный характер, поэтому и электромагнитные связи по длине распределены по случайному закону. Это вызывает необходимость подбора схем скрещивания жил кабеля для каждого конкретного случая.

Поскольку вариантов соединения жил кабеля два, a цепей три, то существует 23=8 способов соединения жил в четверке. Схема соединения жил записывается в виде оператора скрещивания. Первый знак оператора относится к первой основной цепи, второй − ко второй, а третий − к фантомной. Соединение жил напрямую обозначается (•), a со скрещиванием (Х). Операторы скрещивания и соответствующие им схемы соединения жил в четверке приведены в таблице 6.1.

На ГТС НЧ кабели связи имеют обычно небольшую протяженность и по параметрам взаимного влияния, как правило, удовлетворяют установленным нормам и симметрированию не подвергаются. Поэтому подбор оптимальных операторов скрещивания проводится при симметрировании высокочастотных кабелей.


Таблица 6.1 − Операторы скрещивания

 


Технология симметрирования высокочастотных кабелей связи

 

Высокочастотные кабели связи симметрируют на длине ЭКУ в два этапа: в процессе монтажа и на смонтированных ЭКУ. При к этом для обеспечения более высокой однородности линейного тракта и облегчения последующего симметрирования на стадии подготовительных работ проводят группирование строительных длин кабеля по средним значениям рабочей емкости цепей и по величине переходного затухания на ближнем конце. Строительные длины кабеля следует прокладывать в такой последовательности, чтобы средние значения рабочей емкости смежных строительных длин отличались не более чем на 0,2 нгД/км. Ha подходах к усилительным пунктам должны быть проложены две-три строительные длины кабеля c величиной переходного затухания на ближнем конце А0>65 дБ. Выполнение этих мероприятий позволяет снизить составляющие влияния на дальнем конце за счет несогласованности линии и аппаратуры и конструктивных неоднородностей, a также выполнить норму на величину Ао на длине ЭКУ.

При монтаже строительных длин кабеля в соединительных муфтах в каждой четверке жилы соединяют по оператору (Х••), что обеспечивает уменьшение систематической составляющей влияния через третьи цепи и повышает эффективность концентрированного симметрирования. На смонтированном ЭКУ проводят концентрированное симметрирование по результатам измерения защищенности на дальнем конце прибором ВИЗ-600 (визуальный измеритель переходного затухания) или комплексных связей на дальнем конце прибором ИКС-600 (измеритель комплексных связей) в диапазоне частот до 600 кГ'ц. При этом симметрирование выполняют в трех симметрирующих муфтах, расположенных примерно на одинаковом расстоянии друг от друга, сначала методом скрещивания, a затем цепи, не удовлетворяющие нормам, симметрируют путем включения контуров противосвзи.

Подбор оптимальных операторов в трех точках на длине ЭКУ − весьма трудоемкая работа. Достаточно сказать, что при восьми операторах в каждой точке общее число возможных сочетаний равно 83 = 512.

Для экономии времени и затрат на симметрирование существует методика кратчайшего подбора операторов скрещивания, которая заключается в следующем. Многообразие операторов скрещивания делится на две группы. При использовании операторов первой группы (•••, ХХ•, ••Х, ХХХ) комплексные связи соединяемых отрезков кабеля складываются, a при использовании операторов второй группы (Х••, •Х• ,Х•Х, •ХХ) вектор комплексной связи первого отрезка поворачивается, на 180° и связи соединяемых отрезков кабеля вычитаются.

На первом этапе проверяют все частотные характеристики защищенности (комплексной связи), получающиеся при скрещивании жил в трех точках по основным операторам обеих групп (•••) и (Х••). Цель первого этапа - определение оптимального соединения жил для каждой муфты. На этом этапе нужно проанализировать всего 23 = 8 сочетаний операторов скрещивания. В подавляющем большинстве случаев уже на первом этапе удается получить нужную прибавку защищенности от скрещивания.

На втором этапе в каждой муфте следует применять операторы только той группы, основной оператор которой вошел в наилучшее сочетание из восьми, найденное ранее.

Если скрещиванием не удается достичь нормы защищенности цепей на дальнем конце (ддя соединительных линий ГТС А3>65,2.дБ), то проводят концентрированное симметрирование с помощью контуров противосвязи, подбираемых с помощью приборов. При этом пользуются переменным симметрирующим контуром RC.

На протяженных междугородных кабельных линиях в настоящее время применяют методы симметрирования при помощи компенсирующих четырехполюсников, которые включают не в симметрирующих муфтах, а непосредственно на необслуживаемых или обслуживаемых усилительных пунктах. При этом элементы компенсирующих четырехполюсников синтезируют по годографам комплексных электромагнитных связей (см. п. 6.4).

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 687.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...