Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Нарушение механизмов синаптической передачи




Все вещества, нарушающие передачу нервных импульсов в холинергических и катехоламинергических синапсах периферического отдела нервной системы, вызывают рассматриваемые эффекты. Свойства большинства этих веществ хорошо известны из курса фармакологии. К числу наиболее токсичных из известных токсикантов относятся некоторые карбаматы (см. выше), нейротоксины, выделенные из яда змей, и ботулотоксин.

Яды змей

Яды змей, относящихся к семейству Elapidae (тигровая змея, тайпан, морские змеи), содержат нейротоксины, избирательно действующие на механизмы передачи нервного импульса в холинэргических нервно-мышечных синапсах (таблица 22).

Таблица 22. Свойства основных нейротоксинов ядов змей

Токсин Молекулярная масса Масса субъединиц ЛД50 для мышей (мкг/г)
-бунгаротоксин Кротоксин Нотексин Тайпоксин 20500 22000 13600 46000 13500+7000 14000+8000 13600 18000+14000+13000 0,025 0,05 0,025 0,002

(По Howard B.D., 1982)

Все перечисленные в таблице токсины проявляют активность фосфолипаз А2, причем каталитический центр энзимов является функционально значимым для реализации их токсического действия. Интересно отметить, что большинство известных фосфолипаз А2, выделяемых из других источников (поджелудочной железы млекопитающих, пчелиного яда и т.д.), не смотря на высокую специфическую энзиматическую активность, не обладают нейротоксичностью.

Нейротоксические фосфолипазы змеиных ядов угнетают спонтанное и вызванное возбуждением высвобождение ацетилхолина нервными окончаниями мотонейронов, а также некоторыми холинергическими нейронами вегетативной нервной системы. Токсины не проникают через гематоэнцефалический барьер и потому их эффект реализуется лишь на периферии, главным образом в нервно-мышечных синапсах.

Основные клинические признаки отравлений, обусловленные действием нейротоксинов при укусах змей, включают: миальгию при движении, птоз, паралич языкоглоточного нерва, парез конечностей, нарушение сердечной деятеьности, гиперкалиемию, паралич дыхательной мускулатуры.

Блок проведения нервного импульса в нервно-мышечных синапсах развивается в три стадии. В течение первых 5 - 10 минут после воздействия отмечается уменьшение количества ацетилхолина, высвобождаемого при возбуждении нервного волокна. В последующие 30 - 60 минут, при активации нейрона, регистрируется повышенный выброс нейромедиатора. Затем, в течение 60 - 120 минут отмечается постепенное снижение высвобождения ацетилхолина до полного прекращения. В тех случаях, когда в эксперименте используют токсины, фосфолипазная активность которых угнетена химическими модификаторами, удается воспроизвести только первую стадию токсического действия ядов.

Клинически продолжительность латентного периода от момента введения токсина до развития эффекта составляет, как правило, не менее 60 минут. Увеличение дозы вводимого вещества не приводит к уменьшению этого времени. В латентном периоде токсины необратимо связываются с нервными терминалиями. Попытка в условиях эксперимента отмыть токсин от нервных окончаний биопрепарата не приводит к восстановлению способности проводить нервный импульс.

В паралитической стадии интоксикации с помощью электронно-микроскопических исследований удается выявить существенные нарушения структуры пресинаптических отделов холинэргических синапсов. Отмечается набухание митохондрий и их разрушение, значительное уменьшение числа синаптических везикул, уплотнение аксоплазмы.

Механизм действия токсинов до конца не выяснен. Полагают, что нейротоксические фосфолипазы специфически связываются с определенными сайтами пресинаптической мембраны, а затем вызывают неспецифическое разрушение фосфоглицеридов мембраны вокруг сайта, инактивируя тем самым важные в функциональном плане структуры синапса. Опыты, выполненные на изолированных синаптосомах указывают, что одной из таких структур может являться система эффлюкса Са2+ в клетку и клеточные органеллы или каналы для других ионов, в частности К+. Полагают также, что для реализации токсического действия токсины должны попасть внутрь нервных терминалий с помощью механизма специфического эндоцитоза, где и вызывают повреждение синаптосом и митохондрий, нормальная функциональная активность которых необходима для экзоцитоза ацетилхолина. Поскольку нетоксичные фосфолипазы А2 неспецифически связываются с фосфоглицеридами любых, в том числе и несинаптических, биологических мембран, они не обладают свойствами нейротоксикантов.

Различные токсины, вероятно, связываются с различными сайтами пресинаптических структур. Так, одновременная инкубация биопрепарата с двумя нейротоксическими фосфолипазами А2 вызывает блок проведения импульса со значительно большей скоростью, чем с двойной дозой каждого из нейротоксинов в отдельности.

За исключением -бунгаротоксина рассматриваемые нейротоксины обладают также миотоксическим действием на скелетную мускулатуру млекопитающих. Внутримышечное введение веществ сопровождается острой некротической миопатией в области инъекции.

В настоящее время бунгаротоксин, кротоксин, тайпоксин широко используются в практике лабораторных исследований физиологии и биохимии синапсов.

Ботулотоксин

Ботулотоксин - белок, продуцируемый микроорганизмами Clostridium botulinum. Эти бактерии развиваются в белковой среде (в анаэробных условиях) и порой являются причиной массовых пищевых отравлений, при использовании испорченных консервов, копченостей, грибов и т.д. (ботулизм). Ботулотоксин - табельное отравляющее вещество армии США.

В настоящее время известно более 8 серологических типов токсина: A, B, C, D, E, F и т.д., близких по структуре и токсической активности. Ботулотоксин представляет собой протеины с молекулярной массой 150000, состоящие из двух субъединиц (МВ 100000 и 50000), не обладающие протеолитической, фосфолипазной или иной ферментативной активностью. Токсины выделены в кристаллической форме. В водных растворах частично гидролизуются, но токсичность раствора при этом не теряется. Вещество устойчиво к кипячению в течение часа.

Смертельная доза токсина для человека составляет около 5 нг/кг массы.

Вещество проникает в организм через желудочно-кишечный тракт с зараженной водой и пищей, а при применении его в виде аэрозоля и через органы дыхания.

При исследовании судьбы токсиканта в организме установлено, что он избирательно захватывается нервными терминалиями холинэргических волокон; часть введенного токсина путем ретроградного аксонального тока транспортируется в тела нервных клеток. Об этом свидетельствует, в частности, высокое содержание J125 в ипсилатеральных (но не контралатеральных) полусегментах спинного мозга экспериментальных животных после введения им яда, меченого изотопом.

Клиника ботулизма развивается спустя несколько часов после действия яда (до 36). Первые симптомы интоксикации, это сочетание вегетативных реакций (тошнота, рвота, слюнотечение) и признаков общего недомогания (головная боль, головокружение, боли в конечностях). Позже нарушается функция слюнных и потовых желез, аккомодация органа зрения, расширяются зрачки. Основным проявлением интоксикации является постепенно развивающийся паралич поперечно-полосатой мускулатуры. Процесс начинается с глазодвигательной группы мышц. Ранним признаком отравления является диплопия. Позже присоединяется паралич мышц глотки, пищевода (нарушение глотания) и других мышечных групп. Токсический процесс постепенно нарастает. Иногда лишь на 10 сутки и в более поздние сроки может наступить смерть от паралича дыхательной мускулатуры и асфиксии. Летальность при отравлении ботулотоксином составляет от 15 до 30%, а при несвоевременном оказании помощи (введение антиботулинической сыворотки, перевод пострадавшего на искусственную вентиляцию легких и т.д.) может достигать 90%.

Ботулотоксин избирательно блокирует высвобождение ацетилхолина в нервно-мышечных синапсах. В опытах in vitro установлено, что действие ботулотоксина приводит к угнетению как спонтанного, так и вызванного выброса нейромедиатора. Чувствительность постсинаптического рецептора к ацетилхолину не изменяется. Блокада передачи сигнала не сопровождается вмешательством токсиканта в процессы синтеза и хранения ацетилхолина. При исследованиях in vitro спонтанная и индуцируемая активность концевой пластинки нейрона снижается на 90% в течение 60 - 90 минут, после добавления в инкубационную среду токсина в концентрации 10-8 М. По расчетам, для блокады синапса достаточно 10 молекул токсина. Чем выше нервная активность, тем быстрее происходит развитие интоксикации. Морфологические изменения в пораженных синапсах не выявляются методами световой и электронной микроскопии.

Действие вещества продолжительно, до нескольких недель, и потому характер взаимодействия токсина с пресинаптическими структурами-мишенями можно рассматривать как необратимое. Полагают, что восстановление нормальной иннервации мышц происходит в результате формирования новых синаптических контактов.

Периоду клинических проявлений предшествует скрытый период, во время которого и происходит связывание токсиканта с нервными окончаниями. Выделяют четыре периода действия токсина на синапс:

- связывание с плазматической мембраной холинергических нервных окончаний;

- интернализации токсина путем эндоцитоза;

- проникновение в цитозоль синапса при участии pH-зависимой транслоказы;

- внутриклеточное расщепление токсина под влиянием метал-зависимых эндопротеаз с высвобождением действующей части белковой молекулы. Для некоторых серотипов токсина эти молекулы идентифицированы и обозначены как: SNAP-25 (серотип А), синаптобревин (серотип В), синтаксин (серотип С).

Молекулярный механизм действия токсина до настоящего времени не выяснен. Вероятно, в основе эффекта лежит нарушение токсином механизма взаимодействия синаптических везикул, в которых депонирован ацетилхолин, с аксолемой, - необходимый этап процесса Ca2+-зависимого экзоцитоза медиатора. Электрофизиологические исследования показывают, что в отличии от нормальной реакции нервно-мышечного синапса на повышение содержания кальция в инкубационной среде (дозо-зависимый выброс нейромедиатора), увеличение концентрации экстрацеллюлярного кальция с 2 до 16 мМ не приводит к усилению выброса ацетилхолина волокном, обработанным ботулотоксином. Совместное введение в инкубат Ca2+ (4 мМ и выше) и ионофора усиливает выброс ацетилхолина из нервных окончаний обработанных токсином.

Как in vitro, так и in vivo нервную передачу в синапсах временно нормализует 4-аминопиридин. При введении летальной дозы токсина экспериментальному животному, последующее назначение 4-аминопиридина отчасти восстанавливает двигательную активность животного на 1 - 2 часа. К сожалению, из-за высокой токсичности и кратковременности эффекта, 4-аминопиридин не может рассматриваться как эффективное противоядие.

Блокаторы ионных каналов

В строгом смысле слова вещества этой группы не относятся к "чистым" нейротоксикантам, поскольку, блокируя ионные каналы, действуют на возбудимые мембраны всех типов клеток организма: нервных, мышечных, железистых. Порой не возможно решить, поражение какой из структур является ведущим в патогенезе острой интоксикации. Тем не менее, внешние признаки тяжелого поражения очень напоминают действие кураре, традиционно относимого к группе нейротоксикантов. И хотя механизм действия веществ совершенно иной, представляется целесообразным рассмотреть их свойства в данном разделе. Достаточно хорошо изученным представителями группы являются сакситоксин и тетродотоксин.

Сакситоксин

В 1957 году Schantz et al. удалось выделить и изучить свойства так называемого "паралитического яда моллюсков" - одного из наиболее токсичных веществ небелковой природы. По названию одного из моллюсков, употребляемых в пищу, из ткани которого токсикант также выделялся (Saxidomus), вещество получило название сакситоксин. Позже было установлено, что в организм моллюсков сакситоксин поступает с одноклеточными животными вида Conyaulax catenella, являющимися для них продуктом питания. Целый ряд моллюсков, съедобных в обычных условиях, в случае массового размножения этих простейших, в больших количествах накапливают в своих тканях токсин, который для них практически безвреден, становясь ядовитыми.

Сине-зелёные водоросли пресноводных водоемов также синтезируют сакситоксин. Имели место случаи отравления скота водой, зараженной этими водорослями.

Пути биосинтеза сакситоксина в организме одноклеточных не изучены. Установлено, что количество вырабатываемого вещества колеблется в очень широких пределах и зависит от географического региона, времени года и других условий.

Сакситоксин (МВ - 372) - аморфный, хорошо растворимый в воде, спирте, метаноле, ацетоне порошок. В 60х - 70х годах свойства сакситоксина активно изучались военным ведомством США. Химическое строение представлено на рисунке 18. Молекулы сакситоксина, выделенные из разных источников, не полностью идентичны.

Рисунок 18. Структура молекулы сакситоксина

Смертельная доза сакситоксина для человека составляет по разным данным 0,004 - 0,01 мг/кг. Токсичность для мышей при внутрибрюшинном способе введения - около 9 мкг/кг (с регистрацией гибели в течение 30 минут). При назначении вещества через рот смертельная доза - 260 мкг/кг.

Вещество быстро абсорбируется в кишечнике и столь же быстро выводится из организма с мочой. Детально токсикокинетика токсиканта не изучена. Дискуссионным остается вопрос о способности вещества проникать через гематоэнцефалический барьер.

Выделяют три варианта течения отравления сакситоксином: гастро-энтеральный, аллергический, паралитический. Аллергическая (эритематозная) форма отравления появляется у отдельных лиц с повышенной чувствительностью к токсину. Типичной является паралитическая форма.

Обычно симптомы появляются в течение 30 минут после поступления вещества в организм. Первыми признаками поражения являются парестезии в области рта, губ, языка, десен, распространяющиеся на область шеи, конечности. Ощущение покалывания, жжения сменяются онемением. Позже присоединяется атаксия, возникает ощущение невесомости тела. При тяжелой интоксикации появляются признаки бульбарных нарушений: затруднение глотания, речи (иногда - афония), изменение ширины зрачка, временное нарушение зрения. Частыми проявлениями отравления являются: понос, рвота, тошнота, потливость, головная боль, слабость мускулатуры, тахикардия, чувство жажды, саливация, анурия, боли в животе. Паралич двигательной мускулатуры, начавшись в области конечностей, распространяется на другие группы мышц. Смерть наступает через 1 - 24 часа от паралича дыхательной мускулатуры и асфиксии.

Специфических средств терапии нет. Целесообразно перевести пострадавшего на искусственную вентиляцию легких. В случае сохранения жизни прогноз благоприятный: выздоровление бывает быстрым и полным.

Место токсического действия сакситоксина - возбудимые мембраны нервных клеток и миоцитов, причем до конца не определено, какие из структур являются более чувствительными. В опытах на анестезированных кошках показано, что при введение вещества в смертельной доза, проведение нервных импульсов по диафрагмальному нерву регистрируются, когда электромиограмма диафрагмальной мышцы уже безмолвствует. Развивающееся снижение артериального давления связывают с блокадой проведения нервных импульсов по симпатическим нервным волокнам, параличом гладкомышечных клеток сосудистой стенки. Сердечная мышца вовлекается в процесс при введении токсиканта лабораторным животным в дозе 7 мкг/кг.

Токсический эффект на возбудимые мембраны сакситоксин оказывает только при экстрацеллюлярной аппликации. Установлено, что вещество образует обратимый комплекс с белками электровозбудимых натриевых каналов мембран, полностью блокируя при этом вхождение иона внутрь клетки. Тем самым подавляется генерация потенциала действия. Полагают, что взаимодействие осуществляется за счет группы гуанидина, содержащейся в структуре токсиканта.

Тетродртоксин

Тетродотоксин обнаружен в тканях целого ряда живых существ, среди которых рыбы (более 70 видов, в том числе семейства Tetrodontidae - четырехзубообразные), лягушки (3 вида), моллюски (1 вид). В Японии, где представитель четырехзубообразных, рыба Фугу, является деликатесом, десятки людей ежегодно отравляются в результате неумелого приготовления блюда.

Вещество выделено в чистом виде, структура его изучена (рисунок 19). Это бесцветный порошок хорошо растворимый в воде. Раствор стабилен при комнатной температуре. Молекулярная масса - 319,3.

Рисунок 19. Структура молекулы тетродотоксина

Токсичность вещества для белых мышей при внутрибрюшинном способе введения около 10 мкг/кг массы. Доза в 5 мкг/кг (подкожно) вызывает у собак рвоту и нарушение дыхания, а дозы более 6 мкг/кг в течение час приводят к гибели в результате прекращения дыхания и асфиксии.

Независимо от способа поступления в организм симптомы отравления практически одинаковы. Спустя 10 - 45 минут появляется тошнота, рвота, боли в животе, понос, парестезии губ, языка, слизистой полости рта. Покалывание, ощущение жжения кожи конечностей - ранние признаки развивающегося паралича. Позже развивается бледность кожных покровов, беспокойство, общая слабость, онемение конечностей. Зрачок сначала сужен, затем расширяется; в тяжелых случаях взгляд фиксирован, зрачковый и корнеальный рефлексы отсутствуют, нарастают брадикардия и гипотензия, отмечаются гиперсаливация, профузная потливость, понижение температуры тела. Дыхание учащается, становится поверхностным, развивается цианоз губ и конечностей. Иногда на коже и слизистых образуются пузыри. Двигательные расстройства проявляются все отчетливее: появляются подергивания отдельных групп мышц, тремор, координация движений нарушается. Относительно рано в процесс вовлекаются мышцы гортани и глотки, развивается афония. Сознание, как правило, сохраняется весь период интоксикации. Постепенно развивающийся паралич охватывает все большие группы мышц. Смерть наступает от паралича дыхательной мускулатуры и асфиксии в течение 6 - 24 часов от начала интоксикации. Если больной выживает в течение последующих суток, наступает практически полная нормализация состояния, как правило, без отдаленных последствий. Специфических противоядий нет. Рекомендуется перевод пострадавшего на искусственное дыхание.

Исчерпывающих данных о причинах развивающихся эффектов нет. Так, по мнению одних исследователей остановка дыхания является следствием действия токсина на нейроны дыхательного центра, другие полагают, что основным является нарушение проведения нервного импульса по дыхательным нервам или возбудимости дыхательных мышц. Вероятно, последнее представление справедливо, поскольку электровозбудимость диафрагмы блокируется меньшими дозами токсиканта, чем проведение нервного импульса по диафрагмальному нерву.

Показано, что гипотензивное действие тетродотоксина может быть обусловлено прогрессивным параличом мышц кровеносных сосудов и нарушением распространения нервного импульса по вазомоторным нервам.

Многие явления (атаксия, головокружение, нарушение речи) могут быть связаны с действием вещества на нейроны ЦНС.

Тетродотоксин, как и сакситоксин, оказывает избирательное действие на возбудимые мембраны нервов и мышц. Вещество действует только с внешней стороны клетки, полностью блокируя проникновение ионов Na+ внутрь клетки, что совершенно необходимо для формирования потенциала действия. Полагают, что одна молекула тетродотоксина полностью блокирует один ионный канал. Взаимодействие токсина с белками ионных каналов обратимо. Токсикант in vitro может быть удален с поверхности возбудимой мембраны простым отмыванием препарата.










Последнее изменение этой страницы: 2018-04-12; просмотров: 239.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...