Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Цереброспинальная жидкость.
Цереброспинальная жидкость, секретируемая хориоидальным сплетением (клетки сплетения морфологически напоминают клетки эпителия почечных канальцев), омывает желудочки мозга и резорбируется ворсинками паутинной оболочки мозга. Скорость секреции - 0,3 - 0,4 мл/мин. Абсорбция жидкости начинается при давлении, равном 68 мм водяного столба. С увеличением давления возрастает скорость абсорбции. Цереброспинальная жидкость свободно проникает через эпендиму, выстилающую поверхность желудочков, и находится в прямой связи с экстрацеллюлярной жидкостью мозга. Она распространяется между нервными клетками, очищая межклеточное пространство. Цереброспинальную жидкость называют лимфой мозга. Её состав отличается от состава плазмы крови. В то время как цереброспинальная жидкость содержит чуть больше хлоридов, натрия, бикарбоната и магния, чем плазма, в ней содержится несколько меньше мочевины, глюкозы, калия, кальция и значительно меньше белка (15 - 30 мг/100 мл). Объем цереброспинальной жидкости у взрослого человека составляет около 150 мл. В эксперименте, путем введения токсикантов непосредственно в желудочки мозга лабораторных животных (в цереброспинальную жидкость), можно обеспечить их действие на нейроны, минуя гематоэнцефалический барьер. Гематоэнцефалический барьер. ЦНС защищена от действия многих токсикантов гематоэнцефалическим барьером. Аналогичный барьер окружает периферический отдел нервной системы (гематоневральный барьер). Также как и в ЦНС здесь имеются анатомические структуры с повышенной проницаемостью барьера для токсикантов. К числу таких структур относятся корешки дорзальных ганглиев спинного мозга и вегетативные (автономные) ганглии. Энергетический обмен Масса мозга составляет 2 - 3% от массы тела, однако количество протекающей через мозг крови составляет в покое около 15% от общего объема (50 - 60 мл/мин/100 г ткани); мозг потребляет около 25% потребляемой организмом глюкозы и 20% кислорода (3,5 мл/мин/100 г ткани). Такой интенсивный энергетический обмен необходим главным образом для обеспечения ионного транспорта через клеточные мембраны с целью поддержания необходимого электрохимического градиента по обе стороны возбудимых мембран, а также для синтеза нейромедиаторов. Лишь 10 - 20% производимой энергии расходуется на поддержание структуры мозга. В эксперименте парциальное давление кислорода в крови может снижаться до 10 мм Нg и при этом структурные изменения в ткани мозга не развиваются, хотя функции будут нарушены существенно. Высокая потребность в энергии для реализации функций и минимальное энергопотребление, необходимое для поддержания структуры мозга, объясняют, почему при временном нарушении церебрального кровотока, как правило, развиваются транзиторные мозговые явления. Окисление глюкозы - единственный источник энергии в нервной ткани. Резервы глюкозы и кислорода в мозге ничтожно малы. Поэтому обеспечение ими полностью зависит от интенсивности мозгового кровотока. При полной аноксии "местные" запасы кислорода составляют лишь 7 - 10 мл и достаточны для поддержания функций мозга в течение 10 сек. Затем развивается потеря сознания. Необратимое повреждение клеток мозга развивается в течение 4 - 5 мин полной аноксии. Тем не менее восстановление функций возможно и после 8 минут аноксии при условии хорошей гемоперфузии. Энергообеспечение мозга страдает при разных типах острых интоксикаций, сопровождающихся нарушением внешнего дыхания, мозгового кровотока, кислородотрансапортных функций крови, тканевого дыхания. Мозговой кровоток Кровоток обеспечивает снабжения мозга кислородом и субстратами, необходимыми для поддержания пластического и энергетического обмена, а также удаление из ткани мозга диоксида углерода, образующегося в процессе дыхания, и других метаболитов. Кровоснабжение мозга - саморегулирующаяся система. Это означает, что в интервале давления церебральной гемоперфузии 6,65 - 20,0 кРа (50 - 150 мм Hg), скорость мозгового кровотока остаётся неизменной. Ниже 50 мм Hg интенсивность кровотока уменьшается пропорционально снижению давления. При этом ухудшается снабжение мозга кислородом и субстратами. Высокое перфузионное давление крови (более 150 мм Hg) нарушает механизм ауторегуляции, повышается гидростатическое давление в капиллярах мозга, при этом нарушается функциональная целостность ГЭБ. Мозговой кровоток тесно связан с интенсивностью метаболических процессов в ЦНС, как полагают, с помощью механизма, регулируемого концентрацией СО2 и ионов водорода, продуцируемых нейронами и клетками глии. Основным фактором регуляции является ион водорода, который непосредственно влияет на тонус мозговых сосудов. Ацидоз способствует расширению сосудов и усилению мозгового кровотока; алкалоз вызывает спазм сосудов и уменьшает интенсивность мозгового кровотока. Таким образом, мозговой кровоток - важнейшая производная кислотно-основного равновесия в мозге. Усиление нейрональной активности сопровождается повышением образования СО2 и ацидозом. Повышение содержания Н+ в межклеточном пространстве мозга вызывает расширение сосудов, усиливает мозговой кровоток, вымывая углекислый газ и восстанавливая нормальное кислотно-основное равновесие. Интоксикации многими веществами сопровождаются глубоким нарушением кислотно-основного равновесия (метанол, этиленгликоль, цианиды и т.д.), что пагубным образом сказывается на состоянии ЦНС отравленных. Ряд токсикантов оказывает нейротоксический эффект, действуя на сосудистое русло мозга, нарушая мозговой кровоток (свинец, кадмий, висмут, клофилин). Внутричерепное давление Внутричерепное давление определяется объёмом цереброспинальной жидкости, протекающей через мозг крови и объёмом самого мозга. В нормальных условиях увеличение одного из указанных объёмов компенсируется уменьшением других. |
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 263. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |