Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Статистические закономерности в приРОДЕ




Одной из основных проблем в классической физике долгое время оставалась проблема необратимости реальных процессов в природе.

Почти все реальные процессы в природы являются необратимыми: это и затухание маятника, и эволюция звезды, и человеческая жизнь. Необратимость процессов в природе как бы задает направление на оси времени от «прошлого» к «будущему». Это свойство времени английский физик и астроном А. Эддингтон образно назвал «стрелой времени».

Почему же несмотря на обратимость поведения одной молекулы, ансамбль из большого числа таких молекул ведет себя существенно необратимо? В чем природа необратимости? Как обосновать необратимость реальных процессов, опираясь на законы механики Ньютона? Эти и другие аналогичные вопросы волновали умы самых великих ученых XVIII - XIX веков.

Первоначально с проблемой необратимости столкнулись в области термодинамики, которая занимается тепловыми явлениями в природе. Следует отметить, что вплоть до начала XVIII века считалось, что эти явления обусловлены наличием в телах определенной «жидкости» теплорода. Этой концепции придерживались многие выдающиеся ученые. Гипотеза теплорода, хорошо объясняла процессы нагревания тел, их теплового расширения, теплообмен, и многие другие явления, она «не помешала» великому С. Карно заложить основы термодинамики и создать теорию тепловых машин. Именно Карно первым обратил внимание на необратимость тепловых процессов, которая, в частности, проявляется в том, что тепло не может самопроизвольно перетекать от холодного тела к горячему.

После отказа от гипотезы теплорода и перехода к молекулярно-кинетической модели тепловых явлений возникла надежда свести теплоту к механике, что на заре классического естествознания являлось «конечной целью» любой теории. Формально для этого надо было записать уравнения движения (m a = F) и задать начальные состояния каждой молекулы нагретого тела (например, газа). Однако ни решить такую «чудовищно» большую систему уравнений, ни, самое главное, проанализировать полученное решение, если бы даже его и удалось получить, оказалось невозможным. А значит, и природа необратимого поведения при механическом подходе к этой проблеме не раскрывается.

 

состоящих из очень большого числа частиц, нужно решать по-другому, был Дж. Максвелл. Именно он в 1859 г. ввел в физику понятие вероятности, используемое математиками при анализе случайных явлений. Максвелл исходил из того, что в принципе невозможно не только проследить за изменениями положений и импульсов каждой частицы на протяжении большого интервала времени, но и точно определить импульсы и координаты всех молекул газа или любого другого макроскопического тела в заданный момент времени. Их следует рассматривать как случайные величины, которые могут принимать различные значения, подобно тому как при бросании игральной кости может выпасть любое число очков от 1 до 6. Поэтому нужно отказаться, например, от неразрешимой задачи определения точного значения импульса молекулы в данный момент, а попытаться найти вероятность того, что этот импульс имеет то или иное значение.

Максвелл ясно осознавал, что случайное поведение молекул подчиняется не детерминированным законам классической механики, а вероятностным (или статистическим) законам. В дальнейшем Л. Больцман разработал кинетическую теорию газов, в которой законы термодинамики предстали перед учеными как следствие более глубоких статистических законов поведения ансамблей, состоящих из большого числа частиц. Классическая статистическая механика получила завершение в работах Дж. Гиббса, создавшего общий метод расчета термодинамических функций любых систем (а не только газов), находящихся в состоянии равновесия.










Последнее изменение этой страницы: 2018-04-12; просмотров: 239.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...