Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Моделирование логистических систем




Исследование и прогнозирование поведения логистических систем на практике осуществляется посредством экономико-математического моделирования, т. е. описания логистических процессов-в виде моделей.

Под моделью в данном случае понимается отображение логистической системы (абстрактное или материальное), которое может быть использовано вместо нее для изучения ее свойств и возможных вариантов поведения.

При построении таких моделей необходимо соблюдать следующие требования:

• поведение, структура и функции модели должны быть адекватны моделируемой логистической системе;

• отклонения параметров модели в процессе ее функционирования от соответствующих параметров моделируемой логистической системы не должны выходить за рамки допустимой точности моделирования;

• результаты исследования модели и ее поведения должны выявить новые свойства моделируемой логистической системы, не отраженные в исходном материале, использованном для составления данной модели;

• модель должна быть более удобней, чем ее реальный аналог - логистическая система.

Соблюдение этих требований позволяет реализовать качественно новые возможности моделирования, а именно:

• проведение исследования на этапе проектирования логистической системы для определения целесообразности ее создания и применения;

• проведение исследования без вмешательства в функционирование логистической системы;

• определение предельно допустимых значений объемов материальных потоков и других параметров логистической системы без риска разрушения моделируемой системы.

Все модели логистических систем делятся на два класса: изоморфные и гомоморфные.

Изоморфные модели представляют собой полный эквивалент всем морфологическим и поведенческим особенностям моделируемой системы и способны полностью заменить ее. Однако построить и исследовать изоморфную модель практически невозможно вследствие неполноты и несовершенства знаний о реальной системе и недостаточной адекватности методов и средств такого моделирования.

Поэтому практически все модели, используемые в логистике, являются гомоморфными, которые представляют собой модели, подобные отображаемому объекту лишь в отношениях, характерных и важных для процесса моделирования. Другие аспекты строения и функционирования при гомоморфном моделировании игнорируются.

Гомоморфные модели делятся на материальные и абстрактно-концептуальные.

Материальные модели находят в логистическом управлении ограниченное применение, что связано с трудностью и дороговизной воспроизведения на такого рода моделях основных геометрических, физических и функциональных характеристик оригинала и крайне ограниченными возможностями варьирования их в процессе работы с моделью.

Поэтому для логистики в основном используются абстрактно-концептуальные модели, которые подразделяют на символьные и математические.

Символьные модели построены на основе различных, определенным образом организованных знаков, символов, кодов, слов или массивов чисел, изображающих исследуемый оригинал. Для построения подобных моделей используются такие символы или коды, которые однозначным, не допускающим возможности различного толкования образом, представляют моделируемые структуры и процессы. Например, для языкового описания моделей используются специальным образом построенные словари (тезаурусы), в которых в отличие от обычных толковых словарей каждое слово имеет только одно определенное значение.

Информацию, полученную с помощью использования символьных моделей, неудобно обрабатывать (хотя это и возможно) для дальнейшего использования в системах логистического управления. Поэтому наибольшее распространение в процессе создания и эксплуатации систем логистического управления получили математические модели. Математическое моделирование бывает аналитическое и имитационное.

Особенностью аналитических моделей является то, что закономерности строения и поведения объекта моделирования описываются в приемлемой форме точными аналитическими соотношениями. Эти соотношения могут быть получены как теоретически, так и экспериментально. Теоретический подход применим только для простых компонентов и систем, допускающих сильное упрощение и высокую степень абстракции. Кроме того, затруднена проверка адекватности полученного аналитического описания, поскольку поведение моделируемого объекта заранее не определено, а как раз и должно быть выяснено в результате моделирования. Для определения этого поведения и составляется данное аналитическое описание. Аналитическое описание может быть определено также путем проведения экспериментов над исследуемым объектом. Более универсальным подходом обладает имитационное моделирование.

Имитационная модель - это компьютерное воспроизведение развертывания во времени функционирования моделируемой системы, т. е. воспроизведение ее перехода из одного состояния в другое, осуществляемое в соответствии с однозначно определенными операционными правилами.

На ЭВМ имитируется течение управляемого процесса с последующим анализом результатов моделирования для выбора окончательного решения.

Имитационные модели относятся к классу описательных моделей. При этом машинная имитация не ограничивается разработкой лишь одного варианта модели и одноразовой ее эксплуатацией на ЭВМ. Как правило, модель модифицируется и корректируется: варьируются исходные данные, анализируются различные правила действия объектов. Испытания модели осуществляются таким образом, чтобы проверить и сравнить между собой различные структурные варианты логистических систем. Имитация завершается проверкой полученных результатов и выдачей рекомендаций для практического внедрения.

Имитационные модели широко применяются для прогнозирования поведения логистических систем, при проектировании и размещении предприятий, для обучения и тренировки персонала и т. д.

Описание в виде математических моделей экономических (логистических) процессов производится экономико-математическими методами. Алгоритмические методы позволяют реализовать модели, в которых устанавливают связи между входными и выходными параметрами описываемого компонента, скоростями их изменения и скоростями изменения этих скоростей (т. е. ускорениями).

Эти методы разделяют на экономико-статистические и эконо-метрические.

Первые используют описания характерных элементов, основанные на математической и экономической статистике. Вторые базируются на математическом описании происходящих экономических процессов. Например, общий фонд заработной платы однозначно математически связан с числом работающих и их распределением по разрядам.

Эвристические методы представляют собой не правила преобразования некоторых исходных положений, а набор типовых решений, обеспечивающих пусть и не оптимальную, но вполне работоспособную процедуру получения описаний, пригодных для дальнейшего построения моделей.

Эвристические методы делятся на методы исследования операций и методы экономической кибернетики. Последние, в свою очередь, подразделяются на методы теории экономических систем и моделей, методы теории экономической информации и методы теории управляющих систем.

Экономико-математическая модель - это математическая модель исследуемого экономического объекта (системы, процесса), т. е. математически формализованное описание исследуемого экономического объекта (системы процесса), отражающее характер, определенные существенные свойства реального экономического объекта и процессов, протекающих в нем.

Основным для исследования экономико-математической модели является ее целевая функция. Экстремальному значению данной функции для конкретной модели соответствует наилучшее управленческое решение для моделируемого объекта. Описаниями подобной модели являются также ограничения значений ее параметров, которые задаются в виде системы равенств и неравенств. Таким способом формализуются те или иные свойства моделируемого компонента.










Последнее изменение этой страницы: 2018-04-12; просмотров: 388.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...