Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теорема о циркуляции вектора напряженности.потенциал




Существуют два равнозначных определения консервативной силы. Оба они подробно обсуждались в механике.

1. Консервативной называется сила, работа которой не зависит от формы траектории.

2. Консервативной называется сила, работа которой на замкнутой траектории равна нулю.

Рассмотрим перемещение заряда q в электростатическом поле по замкнутой траектории (рис. 3.5.). Заряд из точки 1 перемещается по пути L1 в точку 2, а затем возвращается в исходное положение по другому пути L2. В процессе этого движения на заряд со стороны поля действует консервативная электрическая сила:

.

Работа этой силы на замкнутой траектории L = L1 + L2 равна нулю:

.

Это уравнение, упростив, запишем так:

. (3.18)

Разберём подробно последнее уравнение. Подынтегральное выражение — элементарная работа электрической силы, действующей на единичный положительный заряд, на перемещении (рис. 3.6.):

, (3.19)

здесь q = 1 — единичный заряд.

При подсчёте работы на замкнутой траектории необходимо сложить элементарные работы электрической силы на всех участках траектории. Иными словами, проинтегрировать (3.19) по замкнутому контуру L:

. (3.20)

Интеграл по замкнутому контуру = называется циркуляцией вектора напряжённости электростатического поля по контуру L. По своей сути циркуляция вектора напряжённости — это работа электростатического поля, совершаемая при перемещении по замкнутому контуру единичного положительного заряда.

Так как речь идёт о работе консервативной силы, то на замкнутой траектории она равна нулю:

.

Теорема о циркуляции в электростатике: циркуляция вектора напряжённости электростатического поля по любому замкнутому контуру равна нулю.

Потенциал

Потенциал электрического поля представляет собой отношение потенциальной энергии к заряду. Как известно электрическое поле является потенциальным. Следовательно, любое тело находящиеся в этом поле обладает потенциальной энергией. Любая работа, которая будет совершаться полем, будет происходить за счет уменьшения потенциальной энергии.

Формула 1 — Потенциал

 

Потенциал электрического поля это энергетическая характеристика поля. Он представляет собой работу которую нужно совершить против сил электрического поля для того чтобы переместить единичный положительный точечный заряд находящийся на бесконечности в данную точку поля.


Измеряется потенциал электрического поля в вольтах.


В случае если поле создается несколькими зарядами, которые расположены в произвольном порядке. Потенциал в данной точке такого поля будет представлять собой алгебраическую сумму всех потенциалов, которые создают заряды каждый в отдельности. Это так называемый принцип суперпозиции.

Формула 2 — суммарный потенциал разных зарядов

 

Допустим, что в электрическом поле заряд перемещается из точки "a" в точку "b". Работа совершается против силы электрического поля. Соответственно потенциалы в этих точках будут отличаться.

Формула 3 — Работа в электрическом поле

Рисунок 1 — перемещение заряда в электрическом поле

 

Разность потенциалов двух точек поля будет равна одному Вольту, если для того чтобы переместить заряд в один кулон между ними необходимо совершить работу в один джоуль.


Если заряды имеют одинаковые знаки, то потенциальная энергия взаимодействия между ними будет положительна. В этом случае заряды отталкиваются друг от друга.

Для разноименных зарядов энергия взаимодействия будет отрицательна. Заряды в этом случае будут, притягивается друг к другу.

24. Силовые и эквипотенциальные линии. Связь между напряженностью и потенциалом

Электростатическое поле можно охарактеризовать совокупностью силовых и эквипотенциальных линий.

Силовая линия – это мысленно проведенная в поле линия, начинающаяся на положительно заряженном теле и заканчивающаяся на отрицательно заряженном теле, проведенная таким образом, что касательная к ней в любой точке поля дает направление напряженности в этой точке.

Силовые линии замыкаются на положительных и отрицательных зарядах и не могут замыкаться сами на себя.

Под эквипотенциальной поверхностью понимают совокупность точек поля, имеющих один и тот же потенциал ( ).

Если рассечь электростатическое поле секущей плоскостью, то в сечении будут видны следы пересечения плоскости с эквипотенциальными поверхностями. Эти следы называют эквипотенциальными линиями.

 

Эквипотенциальные линии являются замкнутыми сами на себя.

Силовые линии и эквипотенциальные линии пересекаются под прямым углом.

 

Рассмотрим эквипотенциальную поверхность:

 

(так как точки лежат на эквипотенциальной поверхности).

– скалярное произведение

Линии напряженности электростатического поля пронизывают эквипотенциальную поверхность под углом 900, тогда угол между векторами равен 90 градусам, а их скалярное произведение равно 0.

Тогда:

Уравнение эквипотенциальной линии

 

Рассмотрим силовую линию:

Напряженность электростатического поля направлена по касательной к силовой линии (см. определение силовой линии), также направлен и элемент пути , поэтому угол между этими двумя векторами равен нулю.

Тогда:

или

Уравнение силовой линии

Связь между напряженностью и потенциалом

Из выше сказанного следует, что электрическое поле характеризуется двумя физическими величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика). Выясним как они связаны между собой. Пусть положительный заряд q перемещается силой электрического поля с эквипотенциальной поверхности, имеющей потенциал , на близко расположенную эквипотенциальную поверхность, имеющую потенциал (рис. 13.16).

Напряженность поля Е на всем малом пути dx можно считать постоянной. Тогда работа перемещения С другой стороны . Из этих уравнений получаем

(13.22)

Знак минус обусловлен тем, что напряженность поля направлена в сторону убывания потенциала, тогда как градиент потенциала направлен в сторону возрастания потенциала.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 636.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...