Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Моно- и диоксигеназные пути использования кислорода в клетке. Пероксидазный и радикальный пути использования кислорода.




Монооксигеназные реакции.

Живые организмы содержат группу многочисленных и разнообразных ферментов, получивших название монооксигеназ. В типичном случае один атом кислородной молекулы обнаруживается в новой гидроксидной группе субстрата, другой – восстанавливается до воды в процессе реакции. В соответствии с этим реакция должна протекать при участии фермента, субстрата, кислородаи какого-либо восстанавливающего агента. Допамин-b-монооксигеназа, присутствующая в мозге и в хромаффинной ткани, катализирует гидроксилирование 3,4-диоксифенилэтиламина до норадреналина. Фенолмонооксигеназы имеются у бактерий, растений, насекомых, а также в печени и коже млекопитающих. Полимеризация о-хинона, образовавшегося в результате цепочки реакции, катализируемых этими ферментами, лежит в основе образования меланина.

Диоксигеназные реакции.

Ферменты, катализирующие реакции, в которых оба атома молекулярного кислорода встраиваются в продукты реакции, называются диоксигеназами. Известные в настоящее время ферменты этой группы могут содержать в качестве активной группы гем или негемовое железо, а для действия некоторых необходим a-кетоглутарат. Железо-a-кетоглутаратдиоксигеназы – железозависимые ферменты, катализирующие гидроксилирование субстрата в ходе процесса, в котором a-кетоглутарат подвергается окислительному декарбоксилированию до сукцината: М + О2 + a-кетоглутарат М-ОН + сукцинат + СО2 Пероксидазный путь использования кислорода.Молекулярный кислород является парамагнитным, потому что он содержит два неспаренных электрона с параллельно ориентированными спинами. Эти электроны находятся на разных орбиталях , поскольку два электрона не могут занимать одну и ту же орбиталь, если только их спины не противоположны. Соответственно восстановление кислорода путем прямого введения пары электронов в его частично заполненные орбитали невозможно без «обращения» спина одного из двух электронов. Спиновой запрет восстановления может быть преодолен последовательным добавлением одиночных электронов. Полное восстановление О2 до 2Н2О требует 4 электрона; при одноэлектронном восстановлении в качестве промежуточных продуктов возникают супероксид, пероксид водорода и гидроксидный радикал. Эти продукты очень реакционноспособны, и их присутствие может представлять угрозу для целостности живых систем. На самом деле ОН – наиболее мутагенный продукт ионизирующей радиации – представляет собой чрезвычайно мощный окислитель, который может атаковать все органические соединения. Одноэлектронное восстановление кислорода инициирует цепь реакций, которые ведут к образованию ОН:

О2 + е ® О2 (1)

О2 + Н ®НО2 (2)

О2+ НО2 + Н ® Н2О2+О2 (3)

Супероксид-анион, образуемый в реакции (1), может протонироваться до гидропероксидного радикала (2). Реакция (3) представляет собой спонтанную дисмутацию, приводящую к образованию Н2О2+О2. Совокупность этих реакций дает основание предполагать, что любая система, продуцирующая О2, будет также вскоре содержать Н2О2. Ксантиноксидаза, альдегидоксидаза и многочисленные флавопротеиды образуют О2 и Н2О2, что происходит и при самопроизвольном окислении гемоглобина, ферредоксинов, восстановленных цитохромом b5 гидрохинонов, тетрагидроптеридинов и адреналина. Угроза для клеток, возникающая из-за реакционноспособности О2и Н2О2, устраняется действием ферментов, эффективно обезвреживающих эти соединения

Свободно-радикальный путь (идет без участия ферментов и АТФ не

образуется).

Реакции образования активных форм О22-, ֹОН, 1O2, О22-, R-ООֹ), значение в физиологии и патологии клетки. Механизмы свободно-радикального окисления молекул и антиоксидантной защиты.

Утечка электронов из ЦПЭ и непосредственное их взаимодействие с кислородом - основной путь образования АФК. Кофермент Q в превращается в семихинон – KoQH, который может образовывать супероксидный анион , который, в свою очередь, может превращаться в другие активные формы кислорода. Многие оксидазы(оксидазы аминокислот, супероксид дисмугаза, оксидазы, локализованные в пероксисомах) - ферменты, непосредственно восстанавливающие кислород, образуют пероксид водорода. Монооксигеназы и диоксигеназы тоже источники активных форм кислорода. Пероксид водорода способствует образованию наиболее токсичной формы кислорода - гидроксильного радикала (ОН). Наличие в клетках ионов переходных металлов увеличивает скорость образования АФК(окисление иона железа гемоглобина способствует образованию супероксидного аниона)

Активные формы кислорода повреждают структуру ДНК, белков и различные мембранные структуры клеток, за счёт образования гидропероксидов жирных кислот в клетки могут проникать вода, ионы натрия, кальция, что приводит к набуханию клеток, органелл и их разрушению. Активация перекисного окисления характерна для многих заболеваний: дистрофии мышц, болезни Паркинсона, при которых разрушаются нервные клетки в стволовой части мозга, при атеросклерозе, развитии опухолей.

К ферментам, защищающим клетки от действия активных форм кислорода, относят супе-роксиддисмутазу, каталазу и глутатионпероксидазу; Наиболее активны эти ферменты в печени, надпочечниках и почках, где содержание митохондрий, цитохрома Р450 и пероксисом особенно велико. Супероксиддисмутаза (СОД) превращает супероксидные анионы в пероксид водорода, который может инициировать образование самой активной формы ОН•, разрушается каталазой; глутатионпероксидаза - важнейший фермент, обеспечивающий инактивацию активных форм кислорода, так как он разрушает и пероксид водорода и гидропероксиды липидов. Он катализирует восстановление пероксидов с помощью трипептида глутатиона (γ-глутамилцистеинилглицин). Сульфгидрильная группа глутатиона (GSH) служит донором электронов и, окисляясь, образует дисульфидную форму глутатиона, в которой 2 молекулы глутатиона связаны через дисульфидную группу, окисленный глутатион восстанавливается глутатионредуктазой, 2О2• + 2H+ → H2O2 + O2; 2Н2О2 → 2 Н2О + О2.; Н2О2 + 2 GSH → 2 Н2О + G-S-S-G, GS-SG + NADPH + Н+ → 2 GSH + NADP+.










Последнее изменение этой страницы: 2018-04-11; просмотров: 474.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...