Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Для решения системы рассмотрим одношаговый стационарный метод




 

,                                  (1.24)

 

при n=0,1,2….

Предположим, что задан начальный вектор решения. Тогда метод (1.24) сходится, если норма вектора

 

 

Теорема. Условие сходимости итерационного метода.

Пусть А - симметричная положительно определенная матрица и выполнено условие D - 0.5tA > 0 (где t > 0). Тогда метод (1.24) сходится.

Следствие 1.Пусть А - симметричная и положительно определенная матрица с диагональным преобладанием, то есть:

 

,

 

при j=1,2,…,m. Тогда метод Якоби сходится.

Следствие 2. Пусть А - симметричная и положительно определенная матрица с диагональным преобладанием, тогда метод верхней релаксации сходится при (0< w<2).

Проверяется, при каком w - метод достигает заданной точности быстрее. В частности, при w=1 метод верхней релаксации превращается в метод Зейделя, следовательно, при w=1 метод Зейделя сходится.

Теорема. Итерационный метод (1.24) сходится при любом начальном векторе x0 тогда и только тогда, когда все собственные значения матрицы

 по модулю меньше единицы.



Плохо обусловленные системы линейных алгебраических уравнений

 

Дана система линейных алгебраических уравнений

 

Ах.                                                   (2.1)

 

Если система плохо обусловлена, то это значит, что погрешности коэффициентов матрицы А и правых частей B или же погрешности их округления сильно искажают решение системы. В качестве примера рассмотрим систему

 

Решение этой системы

x1 » 1.981

x2 » 0.4735.

 

Оценим влияние погрешности правых частей на результат. Рассмотрим “возмущенную” систему с правой частью b* = (2.505 , 2.415) и решим эту систему:

x1* » 2.877

x2* » -0.4629.

 

Относительная погрешность правой части d (в) = 0.005/2.51 » 0.28% привела к относительной погрешности решения d (x*) =0.9364/1.981 » 47.3%.

Погрешность возросла примерно в 237 раз. Число обусловленности системы (2.1) приблизительно равна 237.

Подобные системы называются плохо обусловленными.










Последнее изменение этой страницы: 2018-04-12; просмотров: 199.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...