Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основные положения теории тепломассообмена




Введение. Основные понятия и определения теории тепломассообмена. Предмет и задачи теории теплообмена. Основные процессы передачи теплоты и массы. Виды переноса теплоты: теплопроводность, конвекция, излучение. Теплоотдача. Теплопередача. Макроскопический характер учения о теплоте. Современные проблемы тепломассообмена. Вклад отечественных ученых в развитие тепломассообмена.

Инженерные методы расчета видов теплопереноса. Основные понятия и определения теплопроводности. Закон Фурье. Коэффициент теплопроводности. Механизм передачи теплоты в металлах, диэлектриках, жидкостях и газах. Теплопроводность однослойной и многослойной плоских и цилиндрических стенок. Основные понятия и определения конвективного теплообмена. Закон Ньютона - Рихмана. Коэффициенты теплоотдачи и теплопередачи. Теплообмен излучением. Понятие о сложном теплообмене.

Методические указания

В результате изучения этой темы студент должен получить представление о теплопроводности как об одном из трех элементарных процессов теплообмена. Следует усвоить понятие «температурное поле» и такую важнейшую характеристику как температурный градиент, от которого зависит интенсивность теплообмена в теле. Необходимо обратить внимание, что из всевозможных видов температурных полей простейшими, наиболее удобными для расчета, являются одномерные температурные поля (плоское, цилиндрическое и сферическое), в которых температура, а, следовательно, и ее градиент зависят только от одной координаты. Именно одномерные поля наиболее наглядно изображаются графически. При этом необходимо освоить способы представления температурного поля: аналитическое (в виде формул), графическое (в виде изотерм в координатах «температура - расстояние») и табличное. Нужно усвоить понятия «плотность теплового потока» и «тепловой поток», их единицы; обратить внимание на то, что единицами теплового потока являются единицы мощности [ватты (Вт)].

При изучении дифференциального уравнения теплопроводности Фурье необходимо обратить внимание, что его вывод основан на законе сохранения энергии, на законе теплопроводности Фурье и на допущении о постоянном значении коэффициента теплопроводности, которые и определяют существо этого уравнения и область его применения.

Вопросы для самопроверки

1. Могут ли изотермические поверхности пересекаться?

2. Могут ли изотермические поверхности быть замкнутыми?

3. Из двух противоположных утверждений (grad t перпендикулярен изотерме; grad t параллелен изотерме) выберите правильное.

4. Могут ли быть одинаковыми истинная и средняя плотности теплового потока?

5. Могут ли быть представлены одинаковыми единицами плотность теплового потока и объемная мощность внутренних источников теплоты?

6. Можно ли рассматривать дифференциальное уравнение теплопроводности Фурье как одну из форм закона сохранения энергии?

7. Входят ли физические параметры тела в состав условий однозначности, необходимых для решения дифференциального уравнения теплопроводности?

8. Тождественны ли понятия «условия однозначности» и «граничные условия»?

Теплопроводность при стационарном тепловом режиме

Передача теплоты через однослойную и многослойную плоские стенки при граничных условиях I и III рода. Распределение температур при постоянном и переменном коэффициентах теплопроводности. Коэффициент теплопередачи. Передача теплоты через однослойную и многослойную цилиндрические стенки при граничных условиях I и III рода. Линейный коэффициент теплопередачи. Критический диаметр изоляции. Передача теплоты через шаровую стенку.

Теплопроводность в стержне (ребре) постоянного поперечного сечения. Теплопередача через плоскую ребристую стенку. Способы интенсификации процессов теплопередачи. Связь способов интенсификации с современными проблемами экономии материальных и энергетических ресурсов и повышением экономичности производства. Теплопроводность в неограниченной плоской стенке и круглом стержне в случае постоянного коэффициента теплопроводности при наличии внутренних источников теплоты. Теплопроводность в неограниченной цилиндрической стенке при наличии внутренних источников теплоты и: а) отводе теплоты через наружную поверхность, б) отводе теплоты через внутреннюю поверхность, в) отводе теплоты через наружную и внутреннюю поверхности.

[4]

Методические указания

Поскольку производные вдоль изотермических поверхностей обращаются в нуль, написание уравнения Фурье существенно упрощается в случаях одномерных температурных полей. Однако при выводе формулы теплопро­водности плоской стенки с переменным коэффициентом теплопроводности дифференциальное уравнение Фурье неприменимо, и в выводе используется непосредственно закон Фурье при условии постоянства плотности теплового потока.

Вопросы для самопроверки

1. Верно ли, что при стационарном режиме теплообмена перепад температур на стенке прямо пропорционален ее термическому сопротивлению?

2. Одинаковую ли размерность имеют плотность теплового потока и линейная плотность теплового потока?

3. Одинаковы ли по своим размерностям термические сопротивления удельное для плоской стенки и линейное для цилиндрической стенки?

4. Верно ли, что в случае плоской стенки удельное термическое сопротивление теплоотдачи (пограничного слоя) зависит только от коэффициента теплоотдачи?

5. Верно ли, что в случае цилиндрической стенки линейное термическое сопротивление теплоотдачи пограничного слоя) зависит только от коэффициента теплоотдачи?

6. Можно ли вычислить критический диаметр цилиндрической стенки ,не учи­тывая условий теплообмена ее внешней поверхности с окружающей средой?

7. Если на двух плоских стенках одинаковой толщины наблюдается одинаковый перепад температур, то может ли быть различной плотность (интенсивность) теплового потока через эти стенки?

8. Если у однородной цилиндрической стенки исследовать два одинаковых по толщине слоя - внутренний и внешний, то могут ли перепады температур в этих слоях оказаться одинаковыми?

Теплопроводность при нестационарном тепловом режиме

Методы решения задач теплопроводности в нестационарном режиме. Теплопроводность тонкой пластины, длинного цилиндра при граничных условиях третьего рода. Анализ решений. Частные случаи.

Нагревание (охлаждение) параллелепипеда и цилиндра конечной длины. Определение количества теплоты, отдаваемой или воспринимаемой телом в процессе нестационарной теплопроводности. Регулярный тепловой режим нагревания (охлаждения) тел. Численный метод решения задач нестационарной теплопроводности. Использование ЭВМ. [4].

Методические указания

При выводе расчетных формул следует особо отметить момент появления безразмерных комплексов, названных числами Био (Bi), Фурье (Fo), безразмерной температуры θ и безразмерной линейной координаты (X или R), уяснить в дальнейшем их решающую роль в расчетах нестационарных процессов теплопроводности (более подробно понятия о числах подобия рассматриваются в теме 18). Студент должен уметь пользоваться графиками зависимости между числами Фурье, Био и безразмерной температурой, выбирать необходимый график в зависимости от условия задачи, предусматривающего вычисление безразмерной температуры на поверхности или в середине тела (пластины, цилиндра). Следует знать особенности процессов нестационарной теплопроводности в некоторых характерных частных случаях, когда число Био стремится к нулю или бесконечности, или число Fo≥0,3, что упрощает расчетные формулы.

При изучении способа определения количества теплоты, выделяемой (поглощаемой) телом в процессе нестационарной теплопроводности, надо усвоить понятие о средней безразмерной температуре тела, уметь ее определять и использовать для расчета количества теплоты, в частности, npи Fo≥0,3.

Вопросы для самопроверки

1. Достаточна ли знать дифференциальное уравнение теплопроводности, чтобы определить температурное поле в твердом теле (в любой точке и в любой момент времени)?

2. Одинаковы ли единицы измерения коэффициента температуропроводности и кинематической вязкости?

3. Всегда ли начальное условие выражается в виде to=const?

4. Верно ли, что безразмерная координата X становится равной нулю в центре пластины толщиной 2δ?

5. Включен ли в число Био коэффициент теплопроводности жидкой среды (окружающей жидкости)?

6.Одинаково ли написание линейных размеров, входящих в число Фурье для пла­стины и для цилиндра?

7.Может ли безразмерная температура увеличиваться в режиме нагревания и в режиме охлаждения?

8.Достаточно ли одной из диаграмм вида θ=f (Fo Bi) для неограниченной пластины, чтобы определить разность безразмерных температур между серединой и поверхностью ее?










Последнее изменение этой страницы: 2018-04-12; просмотров: 389.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...