Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Неспецифические факторы защиты организма




Механические факторы. Кожа и слизистые оболочки ме­ханически препятствуют проникновению микроорганизмов и других антигенов в организм. Последние все же могут попадать в организм при заболеваниях и повреждениях кожи (травмы, ожоги, воспалительные заболевания, укусы насекомых, живот­ных и т. д.), а в некоторых случаях и через нормальную кожу и слизистую оболочку, проникая между клетками или через клет­ки эпителия (например, вирусы). Механическую защиту осуще­ствляет также реснитчатый эпителий верхних дыхательных пу­тей, так как движение ресничек постоянно удаляет слизь вмес­те с попавшими в дыхательные пути инородными частицами и микроорганизмами.

Физико-химические факторы. Антимикробными свой­ствами обладают уксусная, молочная, муравьиная и другие кис­лоты, выделяемые потовыми и сальными железами кожи; соля­ная кислота желудочного сока, а также протеолитические и другие ферменты, имеющиеся в жидкостях и тканях организма. Особая роль в антимикробном действии принадлежит ферменту лизоциму. Этот протеолитический фермент получил название «мурамидаза», так как разрушает клеточную стенку бактерий и других клеток, вызывая их гибель и способствуя фагоцитозу. Лизоцим вырабатывают макрофаги и нейтрофилы. Содержится он в больших количествах во всех секретах, жидко­стях и тканях организма (кровь, слюна, слезы, молоко, кишеч­ная слизь, мозг и т. д.). Снижение уровня фермента приводит к возникновению инфекционных и других воспалительных заболе­ваний. В настоящее время осуществлен химический синтез лизоцима, и он используется как медицинский препарат для лече­ния воспалительных заболеваний.

Иммунобиологические факторы. В процессе эволюции сформировался комплекс гуморальных и клеточных факторов не­специфической резистентности, направленных на устранение чу­жеродных веществ и частиц, попавших в организм.

Гуморальные факторы неспецифической резистентности со­стоят из разнообразных белков, содержащихся в крови и жид­костях организма. К ним относятся белки системы комплемен­та, интерферон, трансферрин, β-лизины, белок пропердин, фибронектин и др.

Белки системы комплемента обычно неактивны, но приоб­ретают активность в результате последовательной активации и взаимодействия компонентов комплемента. Интерферон оказы­вает иммуномодулирующий, пролиферативный эффект и вызы­вает в клетке, инфицированной вирусом, состояние противови­русной резистентности. β -Лизины вырабатываются тромбоцита­ми и обладают бактерицидным действием. Трансферрин конку­рирует с микроорганизмами за необходимые для них метаболи­ты, без которых возбудители не могут размножаться. Белок про-пердин участвует в активации комплемента и других реакциях. Сывороточные ингибиторы крови, например р-ингибиторы (р-липопротеины), инактивируют многие вирусы в результате не­специфической блокады их поверхности.

Отдельные гуморальные факторы (некоторые компоненты ком­племента, фибронектин и др.) вместе с антителами взаимодей­ствуют с поверхностью микроорганизмов, способствуя их фаго­цитозу, играя роль опсонинов.

Большое значение в неспецифической резистентности имеют клетки, способные к фагоцитозу, а также клетки с цитотоксической активностью, называемые естественными киллерами, или NK-клетками. NK-клетки представляют собой особую популяцию лимфоцитоподобных клеток (большие гранулосодержащие лим­фоциты), обладающих цитотоксическим действием против чуже­родных клеток (раковых, клеток простейших и клеток, поражен­ных вирусом). Видимо, NK-клетки осуществляют в организме противоопухолевый надзор.

В поддержании резистентности организма имеет большое зна­чение и нормальная микрофлора организма.

Фагоцитоз — процесс поглощения, разрушения и выделения из организма патогенов.

В человеческом организме ответственными за него являются моноциты и нейтрофилы.

Процесс фагоцитоза бывает завершенным и незавершенным.

Завершенный фагоцитоз состоит из следующих стадий:
• активация фагоцитирующей клетки;
• хемотаксис или движение к фагоцитируемому объекту;
• прикрепление к данному объекту (адгезия);
• поглощение этого объекта;
• переваривание поглощенного объекта.

Незавершенный фагоцитоз прерывается на стадии поглощения, при этом патоген остается живым.

В процессе фагоцитоза образуются следующие структуры:

· фагосома – образуется после прикрепления фагоцита к объекту путем замыкания его мембраны вокруг патогена;

· фаголизосома – образуется в результате слияния фагосомы с лизосомой фагоцитирующей клетки. После ее образования начинается процесс переваривания.

Вещества из лизосомальных гранул (гидролитические ферменты, щелочная
фосфатаза, миелопероксидаза, лизоцим) могут разрушать чужеродные вещества двумя механизмами:

· кислороднезависимый механизм —осуществляется гидролитическими ферментами;

· кислородзависимый механизм — осуществляется при участии миелопероксидазы, перекиси водорода, супероксидного аниона, активного кислорода и гидроксильных радикалов.

 

Изучение показателей фагоцитоза имеет значение в комплексном анализе и диагностике иммунодефицитаых состояний: часто рецидивирующих гнойно-воспалительных процессах, длительно не заживающих ран, склонности к послеоперационным осложнениям.

Наиболее информативными для оценки активности фагоцитоза считают фагоцитарное число, количество активных фагоцитов и индекс завершенности фагоцитоза.

Фагоцитарное число: норма — 5—10 микробных частиц. Фагоцитарное число — среднее количество микробов, поглощенных одним нейтрофилом крови. Характеризует поглотительную способность нейтрофилов.

 

Количество активных фагоцитов (КАФ): норма — 1,6—5,0-10' в 1 л крови. КАФ — абсолютное число фагоцитирующих нейтрофилов в I л крови.

 

Индекс завершенности фагоцитоза: норма > 1,0. Индекс завершенности фагоцитоза — переваривающая способность фагоцитов.

 

Особенности биологии вирусов. Принципы классификации вирусов

 

В основу классификации вирусов положены следующие кате­гории:

• тип нуклеиновой кислоты (ДНК или РНК), ее структура, ко­личество нитей (одна или две), особенности воспроизводства вирусного генома;

• размер и морфология вирионов, количество капсомеров и тип симметрии;

• наличие суперкапсида;

• чувствительность к эфиру и дезоксихолату;

• место размножения в клетке;

• антигенные свойства и пр.

Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. име­ют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК- содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицатель­ным (минус-нить РНК) геномом. Минус-нить РНК этих виру­сов выполняет только наследственную функцию.

Вирусы— мельчайшие микробы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только ДНК или РНК. Относятся к царству Vira. Являясь облигатными внутриклеточными паразитами, вирусы размножаются в ци­топлазме или ядре клетки. Они — автономные генетические структуры. Отличаются особым — разобщенным (дисъюнктивным) способом размножения (репродукции): в клетке от­дельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы. Сформированная вирусная частица называется вирионом.

Морфологию вирусов изучают с помощью электронной микроскопии, так как их размеры малы (18-400 нм) и срав­нимы с толщиной оболочки бактерий.

Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полио­миелита, ВИЧ), нитевидной (филовирусы), в виде спермато­зоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы.

Простые, или безоболочечные, вирусысостоят из нуклеиновой кисло­ты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц — капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Сложные, или оболочечные, вирусыснаружи капсида окружены ли-попротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболоч­ка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые ши­пы, или шипики (пепломеры). Под оболочкой некоторых вирусов нахо­дится матриксный М-белок.

Тип симметрии. Капсид или нуклеокапсид могут иметь спираль­ный, икосаэдрический (кубический) или слож­ный тип симметрии. Икосаэдрический тип сим­метрии обусловлен образованием изометричес­ки полого тела из капсида, содержащего вирус­ную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спираль­ный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа).

Включения— скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выяв­ляемые под микроскопом при специальном окрашива­нии. Вирус натуральной оспы образует цитоплазмати-ческие включения — тельца Гварниери; вирусы герпеса и аденовирусы — внутриядерные включения.

Размеры вирусов определяют с помощью электронной мик­роскопии, методом ультрафильтрации через фильтры с извест­ным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным — натуральной оспы (около 350 нм).

Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. име­ют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицатель­ным (минус-нить РНК) геномом. Минус-нить РНК этих виру­сов выполняет только наследственную функцию.

Вирусы поражают позвоночных и беспозвоночных животных, а также растения и бактерии. Являясь основными возбудителя­ми инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными пу­тями, в том числе через плаценту (вирус краснухи, цитомега ловирус и др.), поражая плод человека. Они могут приводить к постинфекционным осложнениям — развитию миокардитов, пан­креатитов, иммунодефицитов и др.

Кроме обычных вирусов, известны и так называемые нека­нонические вирусы — прионы — белковые инфекционные ча­стицы, являющиеся агентами белковой природы, имеющие вид фибрилл размером 10—20x100—200 нм. Прионы, по-видимому, являются одновременно индукторами и продуктами автономно­го гена человека или животного и вызывают у них энцефалопа­тии в условиях медленной вирусной инфекции (болезни Крейтц-фельдта—Якоба, куру и др.).

Другими необычными агентами, близкими к вирусам, явля­ются вироиды — небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белка, вызывающие забо­левания у растений.

 

 

Особенности противовирусного иммунитета

Противовирусный иммунитет начинается со стадии презентации вирусного антигена Т-хелперами.

Сильными антигенпрезентирующими свойствами при вирусных инфекциях обладают дендритные клетки, а при простом герпесе и ретровирусных инфекциях – клетки Лангерганса.

Иммунитет направлен на нейтрализацию и удаление из организма вируса, его антигенов и зараженных вирусом клеток. Антитела, образующиеся при вирусных инфекциях, действуют непосредственно на вирус или на клетки, инфицированные им. В этой связи выделяют две основные формы участия антител в развитии противовирусного иммунитета:

1) нейтрализацию вируса антителами; это препятствует рецепции вируса клеткой и проникновению его внутрь. Опсонизация вируса с помощью антител способствует его фагоцитозу;

2) иммунный лизис инфицированных вирусом клеток с участием антител. При действии антител на антигены, экспрессированные на поверхности инфицированной клетки, к этому комплексу присоединяется комплемент с последующей его активацией, что и обуславливает индукцию комплементзависимой цитотоксичности и гибель инфицированной вирусом клетки.

Недостаточная концентрация антител может усиливать репродукцию вируса. Иногда антитела могут защищать вирус от действия протеолитических ферментов клетки, что при сохранении жизнеспособности вируса приводит к усилению его репликации.

Вируснейтрализующие антитела действуют непосредственно на вирус лишь в том случае, когда он, разрушив одну клетку, распространяется на другую.

Когда вирусы переходят из клетки в клетку по цитоплазматическим мостикам, не контактируя с циркулирующими антителами, то основную роль в становлении иммунитета играют клеточные механизмы, связанные прежде всего с действием специфических цитотоксических Т-лимфоцитов, Т-эффекторов и макрофагов. Цитотоксические Т-лимфоциты непосредственно контактируют с клеткой-мишенью, повышая ее проницаемость и вызывая осмотическое набухание, разрыв мембраны и выход содержимого в окружающую среду.

Механизм цитотоксического эффекта связан с активацией мембранных ферментных систем в зоне прилипания клеток, образованием цитоплазматических мостиков между клетками и действием лимфотоксина. Специфические Т-киллеры появляются уже через 1–3 дня после заражения организма вирусом, их активность достигает максимума через неделю, а затем медленно понижается.

Одним из факторов противовирусного иммунитета является интерферон. Он образуется в местах размножения вируса и вызывает специфическое торможение транскрипции вирусного генома и подавление трансляции вирусной мРНК, что препятствует накоплению вируса в клетке-мишени.

Стойкость противовирусного иммунитета вариабельна. При ряде инфекций (ветряной оспе, паротите, кори, краснухе) иммунитет достаточно стойкий, а повторные заболевания встречаются крайне редко. Менее стойкий иммунитет развивается при инфекциях дыхательных путей (гриппе) и кишечного тракта.

 

Отличительные черты риккетсий. Методы культивирования. Риккетсиозы, общая характеристика

Риккетсии – это бактерии, отличительной чертой которых является облигатный внутриклеточный паразитизм. По своему строению близки к грамотрицательным бактериям. Имеются собственные ферментные системы. Неподвижны, спор и капсул нет. Риккетсии представляют собой самостоятельный класс, который делится на подклассы a1, a2, b и g.

a1 включает в себя семейство Rickettsiaceae, наиболее важными из которого являются два рода.

1. Род Rickettsia, виды делят на две группы:

1) группу тифов:

а) R. provacheka – возбудитель эпидемического (вшивого) сыпного тифа;

б) R. typhi – возбудитель эндемического (крысино-блошиного) тифа;

2) группу клещевых риккетсиозов:

а) R. rickettsi – возбудитель лихорадки скалистых гор;

б) R. conori – возбудитель геморрагической лихорадки;

в) R. sibirika – возбудитель североазиатского риккетсиоза.

2. Род Erlihia, выделяют виды: E. canis и E. sennetsu (могут быть возбудителями инфекционного мононуклеоза).

a2 включает в себя семейство Bartonellaceae, род Bartonella, подразделяемые на виды:

1) B. kvintana – возбудитель пятидневной (траншейной) лихорадки;

2) B. hensele – возбудитель «болезни кошачьих царапин».

g включает в себя род Coxiella, вид C. burneti – возбудитель ку-лихорадки.

 

Для риккетсий характерен выраженный полиморфизм. Выделяют четыре формы:

1) форму А – кокковые, овальные, расположенные одиночно или в виде гантелей;

2) форму В – палочки средней величины;

3) форму С – бациллярные риккетсии, крупные палочки;

4) форму D – нитевидные, могут давать ответвления.

Морфология зависит от стадии инфекционного процесса. При острой форме в основном встречаются формы А и В, при хронической, вялотекущей – С и D.

 

Облигатный внутриклеточный паразитизм риккетсий реализуется на клеточном уровне.

Поскольку риккетсии – внутриклеточные паразиты, то в питательных средах они не размножаются. Для их культивирования применяются те же методы, что и для культивирования вирусов:

1) заражение ткани;

2) заражение куриных эмбрионов;

3) в организме экспериментальных животных;

4) в организме эктопаразитов.

 

К наиболее распространенным риккетсиозам относят эпидемический сыпной тиф. Возбудитель – R. Provacheka. Источник инфекции – больной человек. Переносчик – платяные и головные вши.

Это полиморфные микроорганизмы. Размножаясь в клетках хозяина, образуют микрокапсулу. Аэробы. Культивируются в куриных эмбрионах.

Заболевание начинается после поступления возбудителя в кровь. Адгезия риккетсий происходит на эндотелиоцитах капилляров. В цитоплазме этих клеток происходит их размножение. После разрушения клеток новая генерация риккетсий выходит в кровь. Поражение капилляров приводит к образованию тромбов и гранулем. Наиболее опасная локализация поражения – ЦНС. На коже появляется сыпь. Помимо прямого действия, риккетсии выделяют эндотоксин, вызывающий парез капилляров.

 

К наиболее распространенным риккетсиозам относят и эндемический (крысино-блошиный) тиф. Возбудитель – R. typhi. Источник инфекции – крысиные блохи, вши, гамазовые клещи. Пути заражения – трансмиссивный, воздушно-капельный.

Патогенез и клинические проявления заболевания сходны с эпидемическим сыпным тифом.

R. typhi имеют видоспецифический антиген, по которому их дифференцируют от других риккетсий.

Нужно сказать и о ку-лихорадке. Возбудитель – C. burneti. Источник инфекции – домашний скот. Пути передачи – алиментарный, контактно-бытовой.

Это мелкие палочковидные или кокковидные образования, окрашивающиеся по Романовскому—Гимзе в ярко-розовый цвет. Они образуют L-формы. Культивируются в желточном мешке куриного эмбриона.

После проникновения C. burneti в организм возникает риккетсемия. Размножение микроорганизмов происходит в гистиоцитах и макрофагах, после разрушения которых отмечаются генерализация процесса и токсинемия. В процессе инфекции развивается реакция гиперчувствительности замедленного типа, формируется напряженный иммунитет.

 

Патогенность и вирулентность бактерий. Факторы вирулентности.

Патогенность — видовой признак, передающийся по наследству, закрепленный в геноме мик­роорганизма, в процессе эволюции паразита, т. е. это генотипи-ческий признак, отражающий потенциальную возможность мик­роорганизма проникать в макроорганизм (инфективность) и раз­множаться в нем (инвазионность), вызывать комплекс патоло­гических процессов, возникающих при заболевании.

Фенотипическим признаком патогенного микроорганизма является его вирулентность, т.е. свойство штамма, которое проявляется в определенных условиях (при изменчивости микроорганизмов, изменении восприимчивости макроорганизма и т.д.). Вирулент­ность можно повышать, понижать, измерять, т.е. она является мерой патогенности. Количественные показатели вирулентности могут быть выражены в DLM (минимальная летальная доза), DL« (доза, вызывающая гибель 50 % экспериментальных живот­ных). При этом учитывают вид животных, пол, массу тела, спо­соб заражения, срок гибели.

К факторам патогенности относят способность микроорганизмов прикрепляться к клеткам (адгезия), размещаться на их поверхности (колонизация), проникать в клетки (инвазия) и противостоять факторам защиты организма (агрессия).

Адгезияявляется пусковым механизмом инфекционного процесса. Под адгезией понимают способность микроорганизма адсорбироваться на чувствительных клетках с последующей колонизацией. Структуры, ответственные за связывание микроорганизма с клеткой называются адгезинами и располагаются они на его поверхности. Адгезины очень разнообразны по строению и обусловливают высокую специфичность - способность одних микроорганизмов прикрепляться к клеткам эпителия дыхательных путей, других - кишечного тракта или мочеполовой системы и т.д. На процесс адгезии могут влиять физико-химические механизмы, связанные с гидрофобностью микробных клеток, суммой энергии притяжения и отталкивания. У грамотрицательных бактерий адгезия происходит за счет пилей I и общего типов. У грамположительных бактерий адгезины представляют собой белки и тейхоевые кислоты клеточной стенки. У других микроорганизмов эту функцию выполняют различные структуры клеточной системы: поверхностные белки, липополисахариды, и др.
Инвазия.Под инвазивностью понимают способность микробов проникать через слизистые, кожу, соединительно-тканные барьеры во внутреннюю среду организма и распространятся по его тканям и органам. Проникновение микроорганизма в клетку связывается с продукцией ферментов, а также с факторами подавляющими клеточную защиту. Так фермент гиалуронидаза расщепляет гиалуроновую кислоту, входящую в состав межклеточного вещества, и, таким образом, повышает проницаемость слизистых оболочек и соединительной ткани. Нейраминидаза расщепляет нейраминовую кислоту, которая входит в состав поверхностных рецепторов клеток слизистых оболочек, что способствует проникновению возбудителя в ткани.
Агрессия.Под агрессивностью понимают способность возбудителя противостоять защитным факторам макроорганизма. К факторам агрессии относятся: протеазы - ферменты, разрушающие иммуноглобулины; коагулаза - фермент, свертывающий плазму крови; фибринолизин - растворяющий сгусток фибрина; лецитиназа - фермент, действующий на фосфолипиды мембран мышечных волокон, эритроцитов и других клеток. Патогенность может быть связана и с другими ферментами микроорганизмов, при этом они действуют как местно, так и генерализовано.

 

Важную роль в развитии инфекционного процесса играют токсины. По биологическим свойствам бактериальные токсины делятся на экзотоксины и эндотоксины.


Экзотоксиныпродуцируют как грамположительные, так и грамотрицательные бактерии. По своей химической структуре это белки. По механизму действия экзотоксина на клетку различают несколько типов: цитотоксины, мембранотоксины, функциональные блокаторы, эксфолианты и эритрогемины. Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке: повышение проницаемости мембран, блокады синтеза белка и других биохимических процессов в клетке или нарушении взаимодействия и взаимокоординации между клетками. Экзотоксины являются сильными антигенами, которые и продуцируют образование в организме антитоксинов.

Экзотоксины обладают высокой токсичностью. Под воздействием формалина и температуры экзотоксины утрачивают свою токсичность, но сохраняют иммуногенное свойство. Такие токсины получили название анатоксины и применяются для профилактики заболевания столбняка, гангрены, ботулизма, дифтерии, а также используются в виде антигенов для иммунизации животных с целью получения анатоксических сывороток.
Эндотоксиныпо своей химической структуре являются липополисахаридами, которые содержатся в клеточной стенке грамотрицательных бактерий и выделяются в окружающую среду при лизисе бактерий. Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью. При поступлении в организм больших доз эндотоксины угнетают фагоцитоз, гранулоцитоз, моноцитоз, увеличивают проницаемость капилляров, оказывают разрушающее действие на клетки. Микробные липополисахариды разрушают лейкоциты крови, вызывают дегрануляцию тучных клеток с выделением вазодилататоров, активируют фактор Хагемана, что приводит к лейкопении, гипертермии, гипотонии, ацидозу, дессиминированной внутрисосудистой коагуляции (ДВК).
Эндотоксины стимулируют синтез интерферонов, активируют систему комплемента по классическому пути, обладают аллергическими свойствами.
При введении небольших доз эндотоксина повышается резистентность организма, усиливается фагоцитоз, стимулируются В-лимфоциты. Сыворотка животного иммунизированного эндотоксином обладает слабой антитоксической активностью и не нейтрализует эндотоксин.
Патогенность бактерий контролируется тремя типами генов: гены - собственной хромосомами, гены привнесенные плазмидами умеренными фагами.

 

 

Подвижные элементы генома и их роль в изменчивости бактерий.

В состав бактериального генома, как в бак­териальную хромосому, так и в плазмиды, входят подвижные генетические элементы. К подвижным генетическим элементам от­носятся вставочные последовательности и транспозоны.

Вставочные (инсерционные) последова­тельности IS-элементы— это участки ДНК, способные как целое перемещаться из одного участка репликона в другой, а также между репликонами. Они содержат лишь те гены, которые необходимы для их собственного перемещения — транс­позиции: ген, кодирующий фермент транспозазу, обеспечивающую процесс исключения IS-элемента из ДНК и его интеграцию в но­вый локус, и ген, детерминирующий синтез репрессора, который регулирует весь процесс перемещения.

Отличительной особенностью IS-элементов является наличие на концах вставочной последовательности инвертированных повто­ров. Эти инвертированные повторы узнает фермент транспозаза. Транспозаза осуществляет одноцепочечные разрывы це­пей ДНК, расположенных по обе стороны от подвижного элемента. Оригинальная копия IS-элемента остается на прежнем месте, а ее реплицированный дупликат перемещается на новый участок.

Перемещение подвижных генетических элементов принято называть репликативной или незаконной рекомбинацией. Однако в отличие от бактериальной хромосомы и плазмид подвижные генетические элементы не являются самостоятельными репликонами, так как их репликация — составной элемент репликации ДНК репликона, в составе кото­рого они находятся.

Известно несколько разновидностей IS-элементов, которые различаются по раз­мерам и по типам и количеству инвертиро­ванных повторов.

Транспозоны — это сегменты ДНК, облада­ющие теми же свойствами, что и IS-элементы, но имеющие структурные гены, т. е. гены, обеспечивающие синтез молекул, обладаю­щих специфическим биологическим свойс­твом, например токсичностью, или обеспечи­вающих устойчивость к антибиотикам.

Перемещаясь по репликону или между реп­ликонами, подвижные генетические элемен­ты вызывают:

1. Инактивацию генов тех участков ДНК, куда они, переместившись, встраиваются.

2. Образование повреждений генетического материала.

3. Слияние репликонов, т. е. встраивание плазмиды в хромосому.

4. Распространение генов в популяции бак­терий, что может приводить к изменению биологических свойств популяции, смене возбудителей инфекционных заболеваний, а также способствует эволюционным процес­сам среди микробов.

Изменения бактериального генома, а следо­вательно, и свойств бактерий могут происхо­дить в результате мутаций и рекомбинаций.

 

Понятие о морфологических свойствах микроорганизмов. Морфологические группы бактерий.

 

Морфология микроорганизмов – это наука, изучающая их форму, строение, способы передвижения и размножения.

Изучение морфологии микробов тоже служит для их дифференциации. Морфологию изучают в окрашенных препаратах. Устанавливают форму и величину клеток, их расположение в препарате, наличие спор, капсул, жгутиков. В окрашенных препаратах определяют отношение микробов к краскам (тинкториальные свойства) — хорошо или плохо воспринимают краски, как относится к дифференциальным окраскам (в какой цвет окрашивается по Граму, Цилю—Нильсену и др.).

Морфологические свойства бактерий. Бактерии — микроорганизмы, не имеющие оформленного ядра (прокариоты).

Бактерии имеют разнообразную форму и довольно сложную структуру, определяющую многообразие их функциональной деятельности. Для бактерий характерны четыре основные формы: сферическая (шаровидная), цилиндрическая (палочковидная), извитая и нитевидная.

Бактерии шаровидной формы — кокки — в зависимости от плоскости деления и расположения относительно друг друга отдельных особей подразделяются на микрококки (отдельно лежащие кокки), диплококки (парные кокки), стрептококки (цепочки кокков), стафилококки (имеющие вид виноградных гроздьев), тетракокки (образования из четырех кокков) и сарцины (пакеты из 8 или 16 кокков).

Палочковидные бактерии располагаются в виде одиночных клеток, дипло- или стрептобактерий.

Извитые формы бактерий — вибрионы и спириллы, а также спирохеты. Вибрионы имеют вид слегка изогнутых палочек, спириллы — извитую форму с несколькими спиральными завитками.

Размеры бактерий колеблются от 0,1 до 10 мкм. В состав бактериальной клетки входят капсула, клеточная стенка, цитоплаз-матическая мембрана и цитоплазма, в которой содержатся нук-леоид, рибосомы и включения. Некоторые бактерии снабжены жгутиками и ворсинками. Ряд бактерий образуют споры, которые располагаются терминально, субтерминально или центрально; превышая поперечный размер клетки, споры придают ей веретенообразную форму.

 

Понятие об инфекции. 3 участника инфекционного процесса. 3 звена эпидемической цепи.

Термин инфекция или синоним инфекционный процесс обозначает совокупность физиологических и патологических восстановительно-приспособительных реакций, возникающих в восприимчивом макроорганизме при определенных условиях окружающей внешней среды в результате его взаимодействия с проникшими и размножающимися в нем патогенными или условно-патогенными бактериями, грибами и вирусами и направленных на поддержание постоянства внутренней среды макроорганизма (гомеостаза).

 

Сходный процесс, но вызванный простейшими, гельминтами и насекомыми — представителями царства Animalia, носит название инвазия.

В основе инфекционного процесса лежит феномен паразитизма, т. е. такой формы взаимоотношений между двумя организмами разных видов, при которой один из них, называемый паразитом, использует другого, называемого хозяином, в качестве источника питания и как место постоянного или временного обитания, причем оба организма находятся между собой в антагонистических отношениях. В

отличие от сапрофитического образа существования паразитизм — это жизнь в живой среде. Неотъемлемым критерием паразитизма является патогенное воздействие паразита на организм хозяина и ответная, защитная реакция со стороны организма хозяина. Паразитизм — свойство, закрепленное за видом и передающееся по наследству.

 Все возбудители инфекционных и инвазионных болезней человека, животных и растений относятся к паразитам, т. е. способны к паразитической форме существования в живой системе.

Возникновение, течение и исход инфекционного процесса определяются тремя группами факторов: 1) количественные и качественные характеристики микроба — возбудителя инфекционного процесса; 2) состояние макроорганизма, степень его восприимчивости к микробу; 3) действие физических, химических и биологических факторов окружающей микроб и макроорганизм внешней среды, которая и обуславливает возможность установления контактов между представителями разных видов, общность территории обитания разных видов, пищевые связи, плотность и численность популяций, особенности передачи генетической информации, особенности миграции и т. д.

3 Участника (звена) инфекционного процесса:

микроорганизм (его качество и количество определяет возникновение и специфичность инфекционного процесса)

макроорганизм (определяет степень его восприимчивости к данному инфекционному агенту)

факторы внешней среды (биологические и социальные, опосредованно влияют на м/о и макроорганизм).

Понятие об инфекции. Условия возникновения инфекционного процесса. Стадии развития инфекционной болезни.

Термин инфекция или синоним инфекционный процесс обозначает совокупность физиологических и патологических восстановительно-приспособительных реакций, возникающих в восприимчивом макроорганизме при определенных условиях окружающей внешней среды в результате его взаимодействия с проникшими и размножающимися в нем патогенными или условно-патогенными бактериями, грибами и вирусами и направленных на поддержание постоянства внутренней среды макроорганизма (гомеостаза). Для возникновения инфекционного заболевания необходимы три обязательных условия: источник инфекции, механизм передачи инфекции и восприимчивость организма человека.

1. Источники инфекции:

Больной человек - относится к наиболее опасным источникам инфекции, т.к.

он выделяет в большом количестве возбудителей, к тому же в наиболее вирулентном состоянии. Особую опасность представляют больные атипичными, стертыми формами заболевания, т.к. они могут длительное время находиться в контакте с окружающими, заражая их и объекты внешней среды, в том числе и пищевые продукты.

Больное животное - может представлять как прямую опасность, так и передачу возбудителя по «пищевой цепи» через полученные от него пищевые продукты.

Носители инфекции (бактерио-, вирусо- и паразитоносители) - носительство нередко возникает после перенесения инфекционных болезней, когда и человек, и животное какое-то время выделяют в окружающую среду возбудителей болезни.

2. Механизм передачи инфекции - это эволюционно приобретенная способность микроорганизмов распространяться от источника инфекции к восприимчивым макроорганизмам. Осуществляется механизм передачи с помощью путей и факторов передачи инфекции.

Факторы передачи инфекции - это элементы внешней среды, которые могут участвовать в распространении возбудителей болезней. К ним относятся вода, почва, воздух, пищевые продукты, предметы обихода, аппаратура, оборудование, тара, упаковки, посуда и др. Факторы передачи определяют пути передачи инфекции.

Контактный путь передачи - это передача через соприкосновение. Различают контакт прямой - передачу инфекции при непосредственном соприкосновении кожи и слизистых с источником инфекции и непрямой - через предметы домашнего и производственного обихода.

Воздушный путь передачи - передача инфекции осуществляется через воздух воздушно-капельным путем (возбудитель переносится с капельками слизи, выделяющимися из дыхательных путей больного или носителя) или воздушно-пылевым путем (через инфицированную пыль).

Водный путь - при питье зараженной воды, купании в ней, использовании ее для производственных и хозяйственных нужд, для мытья овощей, посуды, оборудования и др.

Пищевой путь - отличается от перечисленных выше тем, что пищевые продукты могут не только передавать инфекцию, но и служить благоприятной питательной средой для размножения и накопления микробов. Заражение пищевых продуктов происходит различными путями:

• непосредственно от больного животного, от которого получен этот продукт (молоко, мясо, яйца);

• от больного человека или бактерионосителя при обработке продуктов, через оборудование, посуду, воду, воздух, руки и т. д.

Трансмиссивный путь - это путь передачи через укусы насекомых-переносчиков (комар - при малярии, клещ - при клещевом энцефалите, вошь - при сыпном тифе и др.). При этом возбудитель попадает непосредственно в кровь.

В зависимости от факторов и путей передачи различают четыре механизма передачи возбудителей, по которым все инфекции распределяются также на четыре группы:

• воздушно-капельный (аэрозольный) механизм - передача инфекций верхних дыхательных путей и легких;

• фекально-оральный механизм - передача кишечных инфекций пищевым, водным и предметно-бытовым путем;

• контактный механизм - передача инфекций наружных покровов (болезни кожи и слизистых оболочек);

• трансмиссивный механизм - передача кровяных (трансмиссивных) инфекций.

3.

Восприимчивость организма - способность организма человека к заболеванию при встрече с болезнетворным возбудителем. Невосприимчивые лица при контакте с инфицированными объектами или непосредственно с больными либо носителями могут не заболевать.

Восприимчивость организма определяется резистентностъю и иммунитетом.

Резистентность - это неспецифическая устойчивость организма, обусловленная действием общезащитных факторов (условия питания, труда, быта, отдыха, особенности климата, социальные условия, экономические воз-можности и др.).

В защите организма против возбудителей инфекционных заболеваний существенную роль играют неспецифические факторы защиты: непроницаемость кожных и слизистых покровов для большинства микроорганизмов; наличие в кожном секрете и кислом содержимом желудка веществ, неблагоприятно действующих на микроорганизмы; присутствие в крови и жидкостях организма (слюне, слезах и пр.) ферментных систем, разрушающих микроорганизмы (лизоцим и др.) и т.д.

Иммунитет - это специфическая устойчивость организма к инфекции. Специфический иммунитет обусловливает защиту лишь от одной какой-либо инфекции и не влияет на восприимчивость к другим инфекциям. Различают естественный и искусственный иммунитет.

Естественный иммунитет может быть врожденным (передается по наследству) и приобретенным (в результате перенесенного заболевания). Приобретенный иммунитет может быть кратковременным, длительным или пожизненным.

Искусственный иммунитет - создается искусственно за счет введения в организм различных препаратов. Различают два вида искусственного иммунитета:

• искусственный активный иммунитет - для его создания применяют вакцины и анатоксины (вакцинопрофилактика). В настоящее время выделяют две категории вакцин: традиционные (живые, инактивированные, т.е. убитые и химические вакцины) и вакцины нового поколения (синтетические, генноинженерные и др.).

• искусственный пассивный иммунитет - для его создания пользуются иммунными сыворотками и иммуноглобулинами (серопрофилактика).

Таким образом, при исключении из эпидемической цепи хотя бы одного из трех звеньев - источника инфекции, путей передачи, восприимчивости населения - прекращается циркуляция возбудителя и болезнь дальше не распространяется. На этом основана профилактика инфекционных заболеваний, в том числе передающихся через пищевые продукты.

стадии развития:

 

1. Инкубационный период — время, которое проходит с момента заражения до начала клинических проявлений болезни.

2. Продромальный период — время появления первых клинических симптомов общего характера

3. Период острых проявлений заболевания — разгар болезни

4. Период реконвалесценции — период угасания и исчезновения типичных симптомов и клинического выздоровления.

 

Предмет и задачи медицинской микробиологии и иммунологии. Вклад российских ученых в развитии микробиологии и иммунологии.

Микробиология (греч. micro – малый, bios – жизнь и logos – учение) – наука о мельчайших организмах, которые по предложению итальянского ученого Седильо принято называть микроорганизмами. Среди микроорганизмов различают: 1) эукариоты – грибы и простейшие; 2) прокариоты – бактерии, риккетсии, микоплазмы и 3) вирусы (см. обложку).

Предмет: изуч. морфологию, физиологию (питание, рост, размножение), иммунологию, генетику и экологию микроорганизмов, имеющих мед. значение.

Задачи медицинской микробиологии. Медицинская микробиология разрабатывает методы диагностики, способы специфической профилактики и терапии инфекционных болезней. Она тесно связана с клиникой инфекционных болезней, эпидемиологией, гигиеной и рядом других смежных дисциплин.

Задачи МБ:

- Установление этиологической роли различных микроорганизмов в патологии человека. На этом строится диагностика инфекционных заболеваний.

- Разработка методов диагностики и профилактики инфекционных заболеваний.

- Изучение болезнетворных свойств патогенных микроорганизмов с целью определения клинической и эпидемиологической значимости того или иного микроорганизма.

- Контроль за эффективностью лечебных и профилактических мероприятий.

- Изучение асептики, антисептики, дезинфекции, стерилизации.

- Изучение механизмов распространения микроорганизмов во внешней среде, в основном в питьевой воде, пище, воздухе.

- Изучение вопросов охраны внешней среды.

Главная задача медицинской микробиологии – ликвидация инфекционных болезней.

После работ Л. Пастера появилось множество исследований, в которых пытались объяснить причины и механизмы формирования иммунитета после вакцинации. Выдающуюся роль в этом сыграли работы И. И. Мечникова и П. Эрлиха.

Исследования И. И. Мечникова (1845—1916) показали, что большую роль вформировании иммунитета играют особыеклетки — макро- и микрофаги. Эти клетки поглощают и переваривают чужеродные частицы, в том числе бактерии.

Исследования И. И. Мечникова по фагоцитозу убедительно доказали, что, помимо гуморального, существует клеточный иммунитет. И. И. Мечников, ближайший помощник и последователь Л. Пастера, заслуженно считается одним из основоположников иммунологии. Его работы положили начало изучению иммунокомпетентных клеток как морфологической основы иммунной системы, ее единства и биологической сущности.

Д.И.Ивановский (1864— 1920) открыл вирусы — представителей царства vira. Один из основоположников вирусологии. Впервые открыл проходящий через бактериологические фильтры возбудитель табачной мозаики, названный впоследствии вирусом. Труды по фитопатологии и физиологии растений.

Гамалея - выдающийся микробиолог. Вместе с И. И. Мечниковым в 1886 году организовал в Одессе первую в России бактериологическую станцию. Автор многих работ по микробиологии и иммунологии (по профилактике холеры, чумы, оспы, паразитарных тифов, бешенства). Открыл бактериолизины, возбудители холеры птиц. Обосновал значение дезинсекции для ликвидации сыпного и возвратного тифов. В 1888 году ученый издал книгу "О прививках против сибирской язвы".

Здровский (1890-1976 года), российский микробиолог, иммунолог и эпидемиолог, академик АМН. Исследования по проблемам тропических болезней, бруцеллеза и др. Под руководством Здродовского разработаны методы вакцинации против столбняка, дифтерии и др. инфекций. Автор книги "Учение о риккетсиях и риккетсиозах"

Смородинцев, российский вирусолог и иммунолог. Труды по этиологии и профилактике гриппа, энцефалитов и др. вирусных инфекций. Совместно с М. П. Чумаковым разработал и внедрил вакцину против полиомиелита.

Ермольева, российский микробиолог. Получила первые отечественные образцы антибиотиков - пенициллина, стрептомицина и др.; интерферона.

Жданов, российский вирусолог. Труды по вирусным инфекциям, молекулярной биологии и классификации вирусов, эволюции инфекционных болезней.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 716.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...