Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

История микробиологии. Этапы развития. Современные задачи.




Этапы: 1. Эвристический (до 16в) – Гиппократ, Авиценна – высказывали предположения о природе инфекционных болезней. Фракасторо – теория о живых контагиях, вызывающих болезни.

2.Морфологический (описательный) – с конца 17 – начало 18 века. Левенгук открыл бактерии, создал микроскоп (ув 150-300 раз). Рассматривая (воду, кровь, налет с зубов) он обнаружил живые микроорганизмы (анималькумосы). После открытия Левенгука начали открываться новые бактерии, грибы, простейшие, в конце 19 были открыты вирусы. В 18 веке в микробиологии зародилась деонтология. В течении 18-20 столетия были открыты новые возбудители инфекционных болезней. В 1892 Ивановский открыл царство вирусов (при изучении мозаичной болезни табака).  

3. Физиологический – после обнаружения микробов, возник вопрос об их устройсте, биосвойствах, процессах жизнедеятельности, этиологии. Важную роль в этот период сыграли работы Луи Пастера, он открыл природу брожения, анаэробиоз, опроверг теорию самозарождения, основал принцип стерилизации,разработал принцип вакцинации и способы получения вакцин.

Так же внес свой вклад Роберт Кох: предложил окраску бактерий, микрофотосъемку, способ получения ЧК. Изучение биологических и физиологических свойств микроорганизмов продолжалось с конца 19 в и в течении 20 в.

4. Иммунологический – В конце 19 века Пастер обосновал принцип вакцинации и способ получения вакцины. Пастер показал, что ослабленный (температурой) возбудитель холеры кур, бешенства, сибирской язвы, потерявший вирулентные патогенные свойства, при введение в организм создает специфическую невосприимчивость к возбудителю. В 1983 Монтанье открыл ВИЧ.; Мечников – фагоцитарная теория иммунитета, Эрлих – гуморальная теория иммунитета.

5. Молекулярно-генетический – начиная со второй половины 20в - была расшифрована молекулярная структура бактерий и вирусов, строение и состав генома, структура факторов иммунной защиты. В результате достижения в микробиологии и иммунологии 20 века в обеспечили успехи в борьбе с инфекционными болезнями, открыли новые пути и методы диагностики и терапии неинфекционных болезней, связанных с нарушением иммунной системы.

Задачи мед микробиологии:

1. Изучение биологии патогенных (болезнетворных) и нормальных для человека микробов.

2. Изучение роли микробов в возникновении, развитии инфекционных (заразных) болезней и формировании иммунного ответа макроорганизма.

3. Разработка методов микробиологической диагностики (распознавания), специфического лечения и профилактики (предупреждения) инфекционных болезней человека.

17. Культивирование бактерий in vitro. Требования к условиям культивирования. Питательные среды, их классификация. Требования, предъявляемые к питательным средам.Культивирование бактерий в системах in vitro осуществляется на питательных средах. Искусственные питательные среды должны отвечать следующим требованиям.

• Каждая питательная среда должна содержать воду, так как все процессы жизнедеятельности бактерий протекают в воде.

• Для культивирования гетероорганотрофных бактерий в среде должен содержаться органический источник углерода и энергии. Эту функцию выполняют различные органические соединения: углеводы, аминокислоты, органические кислоты, липиды. Наибольшим энергетическим потенциалом обладает глюкоза, так как она непосредственно подвергается расщеплению с образованием АТФ и ингредиентов для биосинтетических путей. Часто используется в этих целях пептон - продукт неполного гидролиза белков, состоящий из поли-, олиго- и дипептидов. Пептон также поставляет аминокислоты для построения бактериальных белков.

• Для синтеза белков, нуклеотидов, АТФ, коферментов бактериям требуются источники азота, серы, фосфаты и другие минеральные вещества, в том числе микроэлементы. Источником азота может служить пептон; кроме того, большинство бактерий способны использовать соли аммония в качестве источника азота. Серу и фосфор бактерии способны утилизировать в виде неорганических солей: сульфатов и фосфатов. Для нормального функционирования ферментов бактериям требуются ионы Са2+, Mg2+, Mn2+, Fe2+, которые добавляют в питательную среду в виде солей, чаще всего фосфатов.

• Решающее значение для роста многих микроорганизмов имеет рН среды. Поддерживание определенного рН имеет значение для предотвращения гибели микроорганизмов от ими же образованных продуктов обмена.

• Среда должна обладать определенным осмотическим давлением. Большинство бактерий способны расти на изотоничных средах, изотоничность которых достигается добавлением NaCl в концентрации 0,87%. Некоторые бактерии не способны расти на средах при концентрации соли в них ниже 1%. Такие бактерии называются галофильными. Так как устойчивость к осмотическому давлению определяется наличием у бактерий клеточной стенки, бактерии, лишенные клеточной стенки, микоплазмы L-формы, могут расти на питательных средах, содержащих гипертонический раствор, обычно сахарозы. При необходимости к питательной среде добавляют факторы роста, ингибиторы роста определенных бактерий, субстраты для действия ферментов, индикаторы.

• Питательные среды должны быть стерильными.

В зависимости от консистенции питательные среды могут быть жидкими, полужидкими и плотными. Плотность среды достигается добавлением агара.

Агар - полисахарид, получаемый из водорослей. Он плавится при температуре 100°С, но при охлаждении остывает при температуре 45-50 °С. Агар добавляют в концентрации 0,5% для полужидких сред и 1,5-2% для создания плотных сред. В зависимости от состава и цели применения различают простые, сложные, элективные, минимальные, дифференциально-диагностические и комбинированные среды.

По составу питательные среды могут быть простыми и сложными. К простым средам относятся пептонная вода, питательный бульон, мясопептонный агар. На основе простых сред готовят сложные среды, например сахарный и сывороточный бульоны, кровяной агар.

 

В зависимости от назначения среды подразделяются на элективные, обогащения, дифференциально-диагностические. Под элективными понимают среды, на которых лучше растет какой-то определенный микроорганизм. Например, щелочной агар, имеющий рН 9,0, служит для выделения холерного вибриона. Другие бактерии, в частности кишечная палочка, из-за высокого рН на этой среде не растут.

Среды обогащения - это среды, которые стимулируют рост какого-то определенного микроорганизма, ингибируя рост других. Например, среда, содержащая селенит натрия, стимулирует рост бактерий рода Salmonella, ингибируя рост кишечной палочки.

Дифференциально-диагностические среды служат для изучения ферментативной активности бактерий. Они состоят из простой питательной среды с добавлением субстрата, на который должен подействовать фермент, и индикатора, меняющего свой цвет в результате ферментативного превращения субстрата. Примером таких сред являются среды Гисса, используемые для изучения способности бактерий ферментировать сахара.

Комбинированные питательные среды сочетают в себе элективную среду, подавляющую рост сопутствующей флоры, и дифференциальную среду, диагностирующую ферментативную активность выделяемого микроба. Примером таких сред служат среда Плоскирева и висмут-сульфитный агар, используемые при выделении патогенных кишечных бактерий. Обе эти среды ингибируют рост кишечной палочки.

Для культивирования бактерий необходимо соблюдать ряд условий.

Наличие полноценной питательной среды. Каждая питательная среда независимо от сложности состава и цели применения должна обладать водной основой, органическим источником углерода и энергии, определенным рН, осмотическим давлением.

• Температура культивирования. Температура влияет на скорость размножения. Для поддержания требуемой температуры используют специальные приборы - термостаты.

• Атмосфера культивирования. Для роста и размножения строгих аэробов необходим кислород. Аэробы хорошо растут на поверхности агара на чашках Петри или в тонком верхнем слое жидкой среды. Для обеспечения роста и размножения строгих аэробов в глубинных слоях жидкой среды необходимо диффузное распределение кислорода по всему объему питательной среды. Это достигается непрерывным перемешиванием или встряхиванием питательной среды, т.е. аэрированием. Аэрирование осуществляется на специальных аппаратах - встряхивателях.

Для культивирования факультативных анаэробов используют те же методы, так как в присутствии кислорода у них преобладает оксидативный метаболизм над ферментацией как наиболее энергетически выгодный.

Микроаэрофилы размножаются при пониженном парциальном давлении кислорода. Этого можно достичь повышением парциального давления СО2 в атмосфере культивирования до 1-5% против 0,03% СО2 в атмосфере воздуха. Для этих же целей используют специальные СО2-инкубаторы или же посевы помещают в эксикаторы, в которых устанавливают горящую свечу.

Облигатные анаэробы для своего роста и размножения требуют исключения доступа кислорода воздуха. Это достигается следующими мерами:

- добавлением к питательным средам редуцирующих кислород веществ: тиогликолевой и аскорбиновой кислот, цистеина, сульфидов;

- регенерацией от кислорода воздуха жидких питательных сред путем их кипячения с последующим плотным закупориванием сосудов, в которые налиты среды, резиновыми пробками;

- использованием поглотителей кислорода, щелочного пирогаллола, и других средств, помещая их в герметически закрываемые емкости газ-паки. Этот метод используется для культивирования аэротолерантных бактерий;

- механическим удалением кислорода воздуха с последующим заполнением емкости инертным газом (для этих целей используют анаэростаты и анаэробные боксы).

Для культивирования хемо- и фотоавтотрофных бактерий создается атмосфера, насыщенная СО2.

• Время культивирования зависит от времени генерации. Большинство бактерий культивируют для получения видимогороста в течение 18-48 ч. Для культивирования возбудителя коклюша требуется 5 суток, для культивирования М. tuberculosis - 3-4 недели.

• Освещение. Для выращивания фототрофных микроорганизмов необходим свет










Последнее изменение этой страницы: 2018-04-12; просмотров: 400.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...