Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

СНОВНЫЕ ПОНЯТИЯ КООРДИНАЦИОННОЙ ТЕОРИИ ВЕРНЕРА




При взаимодействии частиц наблюдается взаимная координация частиц, которую можно определить как процесс комплексообразования. Например, процесс гидратизации ионов заканчивается образованием аквакомплексов. Реакции комплексообразования сопровождаются переносом электронных пар и приводят к образованию или разрушению соединений высшего порядка, так называемых комплексных (координационных) соединений.

Особенностью комплексных соединений является наличие в них координационной связи возникшей по донорно–акцепторному механизму:

М + ­¯L ® М­¯L

акцептор донор комплекс

Комплексными соединениями называются соединения, существующие как в кристаллическом состоянии, так и в растворе, особенностью которых является наличие центрального атома, окруженного лигандами.

Комплексные соединения можно рассматривать как сложные соединения высшего порядка, состоящие из простых молекул способных к самостоятельному существованию в растворе.

По координационной теории Вернера в каждом комплексном соединении различают внутреннюю и внешнюю сферу. Центральный атом с окружающими его лигандами образуют внутреннюю сферу комплекса. Ее обычно заключают в квадратные скобки. Все остальное в комплексном соединении составляет внешнюю сферу и пишется за квадратными скобками.

Вокруг центрального атома размещается определенное число лигандов, которое определяется координационным числом (кч).

число координированных лигандов чаще всего равно 6 или 4. Лиганд занимает около центрального атома координационное место. При координации изменяются свойства как лигандов, так и центрального атома. Часто координированные лиганды невозможно обнаружить при помощи химических реакций, характерных для них в свободном состоянии. Более прочно связанные частицы внутренней сферы называются комплексом(комплексным ионом). Между центральным атомом и лигандами действуют силы притяжения (образуется ковалентная связь по обменному и (или) донорно–акцепторному механизму), между лигандами – силы отталкивания. Если заряд внутренней сферы равен 0, то внешняя координационная сфера отсутствует.

Центральный атом (комплексообразователь) – атом или ион, который занимает центральное положение в комплексном соединении. Роль комплексообразователя чаще всего выполняют частицы, имеющие свободные орбитали и достаточно большой положительный заряд ядра, а следовательно могут быть акцепторами электронов. Это катионы переходных элементов. Наиболее сильные комплексообразователи – элементы IВ и VIIIВ групп. Редко в качестве комплексообразователей выступают нейтральные атомы d–элементов [Fe(CO)5] и атомы неметаллов в различной степени окисления[PF6]. Число свободных атомных орбиталей, предоставляемых комплексообразователем, определяет его координационное число. Величина координационного числа зависит от многих факторов, но обычно она равна удвоенному заряду иона комплексообразователя:

Лиганды – ионы или молекулы, которые непосредственно связаны с комплексообразователем и являются донорами электронных пар. Это электроноизбыточные системы, имеющие свободные и подвижные электронные пары, могут быть донорами электронов, например:

Cl­¯; F­¯; ОН­¯; CN­¯; CNS­¯; Н2О­¯; NH 3­¯; СО­¯.

Соединения р–элементов проявляют комплексообразующие свойства и выступают в комплексном соединении в качестве лигандов. Лигандами могут быть атомы и молекулы (белка, аминокислот, нуклеиновых кислот, углеводов). По числу связей, образуемых лигандами с комплексообразователем, лиганды делятся на моно-, би- и полидентатные лиганды. Вышеперечисленные лиганды – молекулы и анионы являются монодентатными, так как они доноры одной электронной пары. К бидентатным лигандам относятся молекулы или ионы, содержащие две функциональные группы, способные быть донором двух электронных пар.

Вопрос

Основы современной номенклатуры комплексных соединений были заложены Альфредом Вернером. До его работ в этой области химии не существовало никакой системы. Комплексные соединения называли, руководствуясь их внешним видом, например,пурпуреосоль (красная соль) [Co(NH3)5Cl]Cl2, лутеосоль (желтая соль) состава [Co(NH3)6]Cl3, либо происхождением, например,красная кровяная соль K3[Fe(CN)6] и т.п.
Немало комплексных соединений получили имена химиков, синтезировавших их: соль Фишера K3[Co(NO2)6], соль РейнекеNH4[Cr(NH3)2(NCS)4] и др.
Современная номенклатура комплексных соединений основана на рекомендациях ИЮПАК (Международный союз общей и прикладной химии) и адаптирована к традициям русского химического языка.



НОМЕНКЛАТУРА КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

В химии под номенклатурой понимают систему правил составления названий соединений. Правила номенклатуры разрабатываются Международным союзом чистой и прикладной химии (IUPAC).

Согласно номенклатуре комплексных соединений, название комплексного аниона начинают с указания состава внутренней сферы *. Во внутренней сфере прежде всего называют анионы, прибавляя к их названию окончание -о. Например: Cl (хлоро-), CN(циано-), OH (гидроксо-) и т.д. Далее называют нейтральные лиганды *. При этом для аммиака используют название “аммин”, для воды – “аква”. Количество лигандов указывают греческими числительными: 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Затем называюткомплексообразователь *, используя для него латинское название и окончание -ат, после чего римскими цифрами в скобках указываютстепень окисления * комплексообразователя. После обозначения состава внутренней сферы называют внешнесферные катионы.

Если комплексообразователь входит в состав катиона, то название внутренней сферы составляют так же, как в случае комплексного аниона, но используют русское название комплексообразователя и в скобках указывают степень его окисления. Примеры:

K[Fe(NH3)2(CN)4] – тетрацианодиамминферрат (III) калия

K4[Fe(CN)6] – гексацианоферрат (II) калия

Na2[PtCl6] – гексахлороплатинат (IV) калия

(NH4)2[Pt(OH)2Cl4] – тетрахлородигидроксоплатинат (IV) аммония

[Pt(NH3)4Cl2]Cl2 – хлорид дихлоротетраамминплатины (IV)

[Ag(NH3)2]Cl – хлорид диамминсеребра (I)

Если комплексное соединение является неэлектролитом, т.е. не содержит ионов во внешней сфере, то степень окисленияцентрального атома не указывается, т.к. она однозначно определяется из условия электронейтральности комплекса. Например:

[RhI3(NH3)3)] – трииодотриамминродий

[Co(NO2)3(H2O)3] – тринитротриаквакобальт

[Cu(CNS)2(NH3)2] – дироданодиамминмедь.

 

27 вопрос










Последнее изменение этой страницы: 2018-04-12; просмотров: 245.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...