Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Структура ДНК. Модель Дж. Уотсона и Ф. Крика. Свойства и функции наследственного материала.
ДНК состоит из двух цепей, комплементарных друг другу и антипараллейных. 1) Комплементарнсть: А=Т; Ц=Г; 2) Антипараллельность –5’- конец одной цепи соединяется с 3’-концм другой, и наоборот; 3) Количество пуриновых оснований ( А+Г) = количество пиримидиновых оснований ( Т+Ц); 4) Пространственная конфигурация молекулы ДНК представляет правозакрученную двойную спираль, в которой азотистой основание ориентировано внутрь спирали. Биологическая роль ДНК: · Хранение · Самовоспроизведение ( репликация) · Передача наследственной информации от клетки к клетки Самовоспроизведение генетического материала. Репликация ДНК.
Репликация ДНК – процесс, приводящий к удвоению молекулы ДНК Полуконсервативный путь комплементарности – клетка дочерняя молекулы ДНК состоит из 1 материнской и 1 вновь синтезируемой нити. Ф – ДНК-полимераза, репликон – участок молекулы ДНК, на котором происходит репликация У прокариот 1 репликон, у эукариот – несколько на каждой хромосоме В репликационной вилке: расплетение молекулы ДНК ( Ф- геликазы), на одной цепи – непрерывно, на другой – прерывно. Этапы репликации на отстающей цепи: 1.Синтез РНК-затравки (праймера) Ф- РНК-полимераза 2.Синтез фрагментов Оказаки (длина 100-150 п.н.) 3.Вырезание праймеров 4.Сшивание фрагментов Оказаки, Ф- лигаза
Организация наследственного материала и про- и эукариот. Классификация нуклеотидных последовательностей в геноме эукариот (уникальные, среднеповторяющиеся, высокоповторяющиеся). Геном – совокупность всей ДНК в гаплоидном наборе хромосом данного вида. Геном прокариотической клетки организован в виде нуклеоида — комплекса ДНК с негистоновыми белками . В 70г. Бригген и Дэвидс – ДНК эукариот содержит разные степени повторяемости. Типа последовательностей:
Менее 20% ДНК генома информативны; 80% неинформативны: спейсеры – участвуют ДНК, разделяющие гены), саттелитная ДНК (молчащая) Ген, его свойства. Особенности организации генов про- и эукариот. Генетический код как способ записи наследственной информации, его свойства. Ген – функциональная единица наследственности, участок ДНК, несущий информацию о первичной структуре белка или РНК. Свойства гена:
Генетический код – способ записи информации о структуре белков в молекуле ДНК. Система расположения нуклеотидов в молекуле ДНК, контролирующая последовательность расположения аминокислот в молекуле белка. ●специальный кодон – инициатор АУГ, служащий сигналом, запускающим трансляцию белка на рибосоме ●кодоны-терминаторы – УАА, УАГ и УГА, стоп – сигналы, прекращающие трансляцию. Свойства генетического кода: ●Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон). ●Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно. ●Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки). ●Специфичность — определённый кодон соответствует только одной аминокислоте ●Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов. ●Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека ●Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными. Особенности строения гена у эукариот: Гены имеют мозаичное строение и состоят из типов участков – экзонов и интронов Экзоны – участки гена, несущие информацию о структуре белка. Интроны – участки гена, не несущие информацию о структуре белка, но выполняющие регулирование гена. Реализация генетической информации. Основные этапы: транскрипция и посттранскрипционые процессы, трансляция и посттрансляционные процессы. Транскрипция - синтез РНК на матрице ДНК. Функциональной единицей является участок ДНК, состоящий из 3 частей: 1) Промотор(П) – участок ДНК перед структурным геном, с которым связывается Ф-РНК-полимераза 2) Структурный 3) Терминатор (Т) – участок окончания транскрипции Стадии транскрипции 1) Инициализация – связывание РНК-полимеразы с Промотором, расплетение второй спирали ДНК 2)
3) Терминация – окончание синтеза РНК
1)
2)
3)
Трансляция - синтез белка на матрице мРНК на рибосомах. 1. Активация аминокислот – присоединение аминокислот к своим собственным тРНК. Ф –аминоацил – тРНК-синтетаза Собственно трансляция 1) Инициация – образование инициирующего комплекса между малой субчастицей рибосомы, кодоном-инициатором АУГ и метионин тРНК. К инициирующему комплексу присоединяется большая субчастица рибосомы, образующих 2 активных центра Р-центр – образование пептидных связей между аминокислотами А-центр – связывание тРНК с кодонами мРНК 2) Элонгация – синтез белковой молекулы
3. Терминация – окончание трансляции В результате трансляции образуется первая структура белка. Далее в каналах ЭПС происходит фолдинг (формирование 2,3,4ой структур белка) Теория оперона: в ДНК помимо структурных генов существуют гены, управляющие работой структурных генов, - регуляторные гены. Оперон или единица генетической регуляции - 1 или несколько структурных генов, отвечающих за 1 биохимическую реакцию, расположенных в хромосоме рядом с группой регуляторных генов Состав оперона: 1. Промотор (П) 2. Оператор (О) – регулирует область оперона, с которой соединяется белок-репрессор 3. 3 структурных гена, которые кодируют 3 Ф, отвечающие за усвоение лактозы в клетке 4. Терминатор (Т) 5. Ген-регулятор (Р) – кодирует белок-репрессор, осуществляет работу оперона; препятствует прохождению РНК-полимеразы к структурным генам. Регуляция биосинтеза белка у прокариот происходит в оперонах на уровне транскрипции. Особенности регуляции у эукариот: 1. Нет оперонов 2. Активность структурного гена регулируется большим числом генов-регуляторов 3. В регуляции работы генов большую роль играют гены-энхансеры (усиливают транскрипцию) и гены-сайленсеры(тормозят транскрипцию) 4. Регуляция работы генов происходит на всех уровнях реализации информации: транскрипция, трансляция и посттрансляционные процессы 5. В регуляции принимаю участие гормоны 6. Наличие альтернативного сплайсинга (гены иммуноглобулинов человека) |
||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2018-04-12; просмотров: 508. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |