Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Определение практической пригодности построенной регрессионной модели.




Практическую пригодность построенной модели можно охарактеризовать по величине линейного коэффициента корреляции r:

· близость  к единице свидетельствует о хорошей аппроксимации исходных (фактических) данных с помощью построенной линейной функции связи ;

· близость  к нулю означает, что связь между фактическими данными Х и Y нельзя аппроксимировать как построенной, так и любой другой линейной моделью, и, следовательно, для моделирования связи следует использовать какую-либо подходящую нелинейную модель.

Пригодность построенной регрессионной модели для практического использования можно оценить и по величине индекса детерминации R2, показывающего, какая часть общей вариации признака Y объясняется в построенной модели вариацией фактора X.

В основе такой оценки лежит равенствоR = r (имеющее место для линейных моделей связи), а также шкала Чэддока, устанавливающая качественную характеристику тесноты связи в зависимости от величины r.

Согласно шкале Чэддока высокая степень тесноты связи признаков достигается лишь при >0,7, т.е. при  >0,7. Для индекса детерминации R2это означает выполнение неравенстваR2>0,5.

При недостаточно тесной связи признаков X, Y (слабой, умеренной, заметной) имеет место неравенство 0,7, а следовательно, и неравенство .

С учетом вышесказанного, практическая пригодность построенной модели связи  оценивается по величине R2следующим образом:

· неравенство R2 >0,5 позволяет считать, что построенная модель пригодна для практического применения, т.к. в ней достигается высокая степень тесноты связи признаков X и Y, при которой более 50% вариации признака Y объясняется влиянием фактора Х;

·  неравенство  означает, что построенная модель связи практического значения не имеет ввиду недостаточной тесноты связи между признаками Xи Y, при которой менее 50% вариации признака Y объясняется влиянием фактора Х, и, следовательно, фактор Х влияет на вариацию Y в значительно меньшей степени, чем другие (неучтенные в модели) факторы.

Значение индекса детерминации R2 приводится в табл.2.5 в ячейке В79 (термин "R -квадрат").

Вывод:

Значение линейного коэффициента корреляции r и значение индекса детерминации R2 согласно табл. 2.5 равны: r =…….…….., R2 =……..………. Поскольку    и , то построенная линейная регрессионная модель связи пригодна (не пригодна) для практического использования.

 Общая оценка адекватности регрессионной модели по F-критерию Фишера

Адекватность построенной регрессионной модели фактическим данным (xi, yi) устанавливается по критерию Р.Фишера, оценивающему статистическую значимость (неслучайность) индекса детерминации R2.

Рассчитанная для уравнения регрессии оценка значимости R2 приведена в табл.2.6 в ячейке F86(термин "Значимость F"). Если она меньше заданного уровня значимости α=0,05, то величина R2 признается неслучайной и, следовательно, построенное уравнение регрессии  может быть использовано как модель связи между признаками Х и Y для генеральной совокупности предприятий отрасли.

Вывод:

Рассчитанный уровень значимостиαр индекса детерминации R2 есть αр=……………… Так как он меньше(больше) заданного уровня значимости α=0,05, то значение R2 признается типичным (случайным) и модель связи между признаками Х и Y ……………………применима (неприменима) для генеральной совокупности предприятий отрасли в целом.

 Оценка погрешности регрессионной модели

Погрешность регрессионной модели можно оценить по величине стандартной ошибки  построенного линейного уравнения регрессии . Величина ошибки  оценивается как среднее квадратическое отклонение по совокупности отклонений  исходных (фактических) значений yi признака Y от его теоретических значений , рассчитанных по построенной модели.

Погрешность регрессионной модели выражается в процентах и рассчитывается как величина .100.

В адекватных моделях погрешность не должна превышать 12%-15%.

Значение  приводится в выходной таблице "Регрессионная статистика" (табл.2.5) в ячейке В81 (термин "Стандартная ошибка"), значение   – в таблице описательных статистик (ЛР-1, Лист 1, табл.3, столбец 2).

Вывод:

Погрешность линейной регрессионной модели составляет .100=___________.100=…..……..%, что подтверждает (не подтверждает) адекватность построенной модели ……………………………

Задача 6. Дать экономическую интерпретацию:

1) коэффициента регрессии а1;

3) остаточных величин i.

2) коэффициента эластичности КЭ;

6.1. Экономическая интерпретация коэффициента регрессии а1

В случае линейного уравнения регрессии =a0+a1x величина коэффициента регрессии a1 показывает, на сколько в среднем (в абсолютном выражении) изменяется значение результативного признака Y при изменении фактора Х на единицу его измерения. Знак при a1 показывает направление этого изменения.

Вывод:

Коэффициент регрессии а1 =……………….. показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1 млн руб. значение результативного признака Выпуск продукции увеличивается (уменьшается) в среднем на ……………..млн руб.










Последнее изменение этой страницы: 2018-04-12; просмотров: 257.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...