Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ




КАФЕДРА СТАТИСТИКИ

 

 

О Т Ч Е Т

о результатах выполнения

компьютерной лабораторной работы

 

Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel

 

 

Вариант № ____

 

Выполнил: ст. III курса гр.________________

______________________

ФИО

Проверил:_________________________

ФИО

 

Москва ………..г.



Постановка задачи статистического исследования

Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования деятельности 30-ти предприятий и частично использует результаты ЛР-1.

В ЛР-2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные ЛР-1 после исключения из них аномальных наблюдений.

Таблица исходных данных

В процессе статистического исследования необходимо решить ряд задач.

1. Установить наличие статистической связи между факторным признаком Х и результативным признаком Y графическим методом.

2. Установить наличие корреляционной связи между признаками Х и Yметодом аналитической группировки.

3. Оценить тесноту связи признаков Х и Y на основе эмпирического корреляционного отношения η.

4. Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройкиПакет анализа, и оценить тесноту связи признаков Х и Y на основе линейного коэффициента корреляции r.

5. Определить адекватность и практическую пригодность построенной линейной регрессионной модели, оценив:

а) значимость и доверительные интервалы коэффициентов а0, а1;

б) индекс детерминации R2 и его значимость;

в) точность регрессионной модели.

6. Дать экономическую интерпретацию:

а) коэффициента регрессии а1;

б) коэффициента эластичности КЭ;

в) остаточных величин εi.

7. Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм.


2. Выводы по результатам выполнения лабораторной работы[3]

Задача 1. Установление наличия статистической связи между факторным признаком Х и результативным признаком Yграфическим методом.

Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y.

Вывод:

Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет (не имеет) место статистическая связь. Предположительный вид связи – линейная (нелинейная) прямая (обратная).

Задача 2.Установление наличия корреляционной связи между признаками Х и Yметодом аналитической группировки.

Корреляционная связь – важнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются от группы к группе средние групповые значения  результативного признака Y(усредняются результативные значения , полученные под воздействием фактора ). Для выявления наличия корреляционной связи используется метод аналитической группировки.

Вывод:

Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Хзакономерно (незакономерно) увеличиваются (уменьшаются) средние групповые значения результативного признака . Следовательно, между признакамиХи Y………………………………................. ...

……....................................................................................................................................

Задача 3.Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.

Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель η – эмпирическое корреляционное отношение, задаваемое формулой

      ,

где  и  - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции (индекс х дисперсии  означает, что оценивается мера влияния признака Х на Y).

Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:

Значениеη 0,1 – 0,3 0,3 – 0,5 0,5 – 0,7 0,7 – 0,9 0,9 – 0,99
Сила связи Слабая Умеренная Заметная Тесная Весьма тесная

Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла.

Вывод:

Значение коэффициента η =……………………, что в соответствии с оценочной шкалой Чэддока говорит о …………………………степени связи изучаемых признаков.

Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессиянадстройки Пакет анализаи оценка тесноты связи на основе линейного коэффициента корреляции r.

4.1. Построение регрессионной модели заключается в нахождении аналитического выражения связи между факторным признаком Xи результативным признаком Y.

Инструмент Регрессия на основе исходных данных (xi , yi), производит расчет параметров а0и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.

Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.

Вывод:

Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0иа1позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения …………………….

4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.

Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").

Вывод:

Значение коэффициента корреляции r =…………… , что в соответствии с оценочной шкалой Чэддока говорит о ..….………………………. степени связи изучаемых признаков.

Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.

Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.

Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков XиY выполняется в 4 этапа:

1) оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;

2) определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2;

3) проверка значимости уравнения регрессии в целом по F-критерию Фишера;

4) оценка погрешности регрессионной модели.

5.1. Оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов

Так как коэффициенты уравненияа0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi , yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:

1. проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);

2. определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.

Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:

 – значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;

 – рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92;

 – доверительные интервалы коэффициентов с уровнем надежности Р=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.

5.1.1. Определение значимости коэффициентов уравнения

Уровень значимости – это величина α=1–Р, где Р – заданный уровень надежности (доверительная вероятность).

Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95.Для этого уровня надежности уровень значимости равен α = 1 – 0,95 = 0,05.Этот уровень значимости считается заданным.

В инструменте Регрессиянадстройки Пакет анализа для каждого из коэффициентова0иа1 вычисляется уровень его значимости αр,который указан в результативной таблице (табл.2.7термин "Р-значение"). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр,меньше заданного уровня значимости α= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.

Примечание. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0.В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен.

Если незначимым (случайным) является коэффициент регрессии а1,то взаимосвязь между признаками X иY в принципе не может аппроксимироваться линейной моделью.

Вывод:

Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр =…..………… Так как он меньше (больше) заданного уровня значимости α=0,05, то коэффициент а0 признается типичным (случайным).

Для коэффициента регрессии а1 рассчитанный уровень значимости есть αр =………..…… Так как он меньше (больше) заданного уровня значимости α=0,05, то коэффициент а1 признается типичным (случайным).

5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности

Доверительные интервалы коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.

 

Таблица 2.9










Последнее изменение этой страницы: 2018-04-12; просмотров: 228.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...