Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Индивидуальное развитие организмов 4 страница




Пример: У винограда эндомитоз был обнаружен в кончиках молодых корней сорта «Фоль бланш». По своему происхождению, большинство известных полиплоидных сортов винограда возникло на основе соматических мутаций в результате спонтанного образования полиплоидных клеток путем эндомитоза. При определённых благоприятных условиях эти клетки занимают апикальное положение и, делясь в дальнейшем путём митоза, дают начало полиплоидным побегам на диплоидных кустах. От таких побегов возникли, например, тетраплоидные клоны:

• «Шабаш крупноягодный»,

• «Рислинг крупноягодный»

Значение: Генетическое и функциональное значение эндомитоза заключается в увеличении копийности (т.е. числа копий) генов. За счет этого клетка может получить больше продуктов этих генов (белков) и + увеличивается генетическая стабильность, т.к. при мутации одного гена остается еще масса неповрежденных копий этого гена. Это тупиковый путь регуляции экспрессии генов, поэтому он довольно редко встречается в природе.

Полиплоидия - (от греч. polyploos - многократный и eidos - вид) -наследственное изменение, заключающееся в кратном увеличении числа набора хромосом в клетках организма. Широко распространена у растений(большинство культурных растений - полиплоиды), среди раздельнополыхживотных встречается редко. Полиплоидия можетбыть вызвана искусственно(напр., алкалоидом колхицином). У многих полиплоидных форм растений болеекрупные размеры, повышенное содержание ряда веществ, отличные от исходныхформ сроки цветения и плодоношения. На основе полиплоидии созданывысокоурожайные сорта сельскохозяйственных растений (напр., сахарнойсвеклы).

Значение: Многие культурные растения полиплоидны, т. е. содержат более двух гаплоидных наборов хромосом. Среди полиплоидов оказываются многие основные продовольственные культуры; пшеница, картофель, онес. Поскольку некоторые полиплоиды обладают большой устойчивостью к действию неблагоприятных факторов и хорошей урожайностью, их использование и селекции оправдано.

Политения (от греч. poly — много и лат. taenia — повязка, лента) — образование в ядре соматических клеток многонитчатых (политенных) хромосом, превышающих по размерам обычные хромосомы в сотни раз. Размер политенных хромосом обусловлен многократной репликацией без последующего расхождения сестринских хроматид, число которых может превышать 1000.

    Амито́з, или прямо́е деле́ние кле́тки — деление клеток простым разделением ядра надвое.

При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует. Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. При амитозе делится только ядро, причем без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

 

32 Размножение. Способы и биологическая роль размножения. Основа классификации способов размножения – тип деления клеток.

Размножение — присущее всем живым организмам свойство воспроизведения себе подобных, обеспечивающее непрерывность и преемственность жизни.

Биологическая роль размножения: обеспечивает смену поколений; с его помощью сохраняется во времени биологические виды и жизнь как таковая; поддерживается внутривидовая изменчивость; решаются задачи увеличения числа особей.

Существуют два основных способа размножения — бесполое и половое.

· Бесполое размножение 1-осуществляется без образования гамет 2- при участии лишь одной родительской особи или его частью, 3- клеточная основа- митоз.

4- из одной клетки образуется эндеитичное потомство- клон. 5- источник    изменчивости- случайная мутация. 6- быстрое увеличение числа потомства. 7- способность сохранять уже имеющиеся признаки. 8- частое смена поколения.

Одноклеточные:

Бинарное Деление — способ бесполого размножения, характерный для одноклеточных организмов, при котором материнская особь делится на две или большее количество дочерних клеток. Простейшие.

Множественное деление (шизогония): Одна распадается на много.споровики

Почкование — способ бесполого размножения, при котором новые особи образуются в виде выростов на теле родительской особи. Дочерние особи могут отделяться от материнской и переходить к самостоятельному образу жизни (гидра, дрожжи), могут остаться прикрепленными к ней, образуя в этом случае колонии (коралловые полипы).

    Многоклеточные:

Фрагментация — способ бесполого размножения, при котором новые особи образуются из фрагментов (частей), на которые распадается материнская особь (кольчатые черви, морские звезды, спирогира, элодея). В основе фрагментации лежит способность организмов к регенерации.

Спорообразование — размножение посредством спор. Споры — специализированные клетки, у большинства видов образуются в особых органах — спорангиях.

Вегетативное- корневище, луковицы.

Полиэмбриология- деление зародыша на ранних стадиях. Близнецы.

 

Половое размножение- биологический процесс РАЗМНОЖЕНИЯ, заключающийся в соединении генетического материала двух родителей. Половое размножение встречается в различных формах как у растений, так и у животных. Этот процесс вызывает изменения ГЕНОТИПА и ФЕНОТИПА внутри вида. ГАМЕТЫ, гаплоидные половые клетки, создаваемые путем МЕЙОЗА, содержат только половину числа ХРОМОСОМ родительских клеток (диплоидных клеток). При ОПЛОДОТВОРЕНИИ гаметы, обычно по одной от каждого родителя, сливаются для создания зиготы с диплоидным числом хромосом. Зигота многократно делится, а получаемые клетки видоизменяются и дают начало зародышу, и в конечном счете полностью сформировавшемуся организму.

1-в основе лежит половой процесс 2-клеточная основа мейоз и оплодотворение. 3- происходит с участием гаплоидных гамет. 4- встреча двух противоположенных особей. 5- расширяет приспособление организма. 6- новые комбинации признаков.

    Одноклеточные-

Конъюгация-неполный половой процесс, при котором происходит обмен половыми ядрами, но при этом кол-во особей не меняется но качественно различимы. Бактерии , инфузории.

Копуляция- соединение двух особей при половом акте; в более узком смысле - слияние двух половых клеток (гамет) у низших организмов (простейших, водорослей, грибов)

 

  Многоклеточные:

Конъюгация (спирагира, водоросли)

Гаметическая копуляция-с оплодотворением. Растения и животные.

Развитие без оплодотворения- Партеногенез. (муравьи и тля) АНДРОГЕНЕЗ и ГИНОГЕНЕЗ.

 

35 Мейоз. Фазы мейоза, их характеристика и значение. Рекомбинация наследственного материала, ее медицинское и эволюционное значение.

Мейоз- редукционное деление, способ деления клеток, в результате которого происходит уменьшение (редукция) числа хромосом в два раза и одна диплоидная клетка (содержащая два набора хромосом) после двух быстро следующих друг за другом делений даёт начало 4 гаплоидным (содержащим по одному набору хромосом). Восстановление диплоидного числа хромосом происходит в результате оплодотворения. М. — обязательное звено полового процесса и условие формирования половых клеток (гамет).

В отличие от широко распространенного митоза, сохраняющего в клетках постоянное диплоидное число хромосом, мейоз приводит к образованию из диплоидных клеток гаплоидных гамет. При последующем оплодотворении гаметы формируют организм нового поколения с диплоидным кариотипом (пс + пс == 2n2c). В этом заключается важнейшее биологическое значение мейоза, который возник и закрепился в процессе эволюции у всех видов, размножающихся половьм путем.

Мейоз состоит из двух быстро следующих одно за другим делений, происходящих в периоде созревания.

         Профаза I — профаза первого деления очень сложная и состоит из стадий:

· Конденсация упаковка хромосом ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).

· Конъюгация — соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.

· Кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.

Происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.

/\ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки.

            Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки.

       Анафаза I- гомологичные хромосомы с помощью нитей веретена расходятся к полюсам; при этом каждая хромосома пары может отойти к любому из двух полюсов, независимо от расхождения хромосом др. пар. Поэтому число возможных сочетаний при расхождении хромосом равно 2n, где n — число пар хромосом.

       Телофаза I- у каждого полюса начинается деспирализация хромосом и формирование дочерних ядер и клеток.

Далее следует короткая интерфаза без редупликации ДНК — интеркинез, и начинается второе деление М.

        Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.

        Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

        Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.

        Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки.

· Мейоз создает возможность для возникновения новых комбинаций генов (комбинативная изменчивость), так как происходит образование генетически различных гамет.

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом

 

 

36 Мейоз, цитологическая и цитогенетическая характеристика. Биологическое значение мейоза.

Период созревания, или мейоз – сущность мейоза состоит в том, что каждая половая клетка получает одинарный — гаплоидный набор хромосом. Вместе с тем, мейоз — это стадия, во время которой созда­ются новые комбинации генов путем сочетания разных ма­теринских и отцовских хромосом. Перекомбинирование на­следственных задатков возникает, кроме того, и в результа­те обмена участками между гомологичными хромосомами, происходящего в мейозе. Мейоз включает два последовательных, следующих друг за другом практически без перерыва, деления. Как и при митозе, в каждом мейотическом делении выделяют четыре стадии: профазу, метафазу, анафазу и телофазу. Второе мейотическое деление – сущность периода созревания состоит в том, что в половых клетках путем двукратного мейотиче-ского деления количество хромосом уменьшается вдвое, а количество ДНК — вчетверо. Биологический смысл второго мейотического деления заключается в том, что количество ДНК приводится в соот­ветствие хромосомному набору. У особей мужского пола все четыре гаплоидные клетки, образовавшиеся в результате мейоза, в дальнейшем преоб­разуются в гаметы — сперматозоиды. У особей женского пола вследствие неравномерного мейоза лишь из одной клет­ки получается жизнеспособное яйцо. Три другие дочерние клетки гораздо мельче, они превращаются в так называемые направительные, или редукционные, тельца, вскоре поги­бающие. Биологический смысл образования только одной яйце­клетки и гибели трех полноценных (с генетической точки зрения) направительных телец обусловлен необходимостью сохранения в одной клетке всех запасных питательных веществ, для развития, будущего зародыша.

 

37 Сперматогенез и овогенез. Цитологическая и цитогенетическая характеристики. Морфофизиологические особенности половых клеток.

Гаметогенез — процесс образования яйцеклеток (овогенез) и сперматозоидов (сперматогенез) —подразделяется на ряд стадий.

 

· В стадии размножениядиплоидные клетки, из которых образуются гаметы, называют сперматогониями и овогониями. Эти клетки осуществляют серию последовательных митотических делений, в результате чего их количество существенно возрастает, но в объёме не изменяются. Сперматогонии размножаются на протяжении всего периода половой зрелости мужской особи. Размножение овогоний приурочено главным образом к периоду эмбриогенеза. У человека в женском организме этот процесс наиболее интенсивно протекает в яичниках между 2-м и 5-м месяцами внутриутробного развития. К 7-му месяцу большая часть овоцитов входит в профазу I мейоза.

Так как способом размножения клеток-предшественниц женских и мужских гамет является митоз, то овогоний и сперматогонии, как и все соматические клетки, характеризуются диплоидностью. Если в одинарном, гаплоидном наборе число хромосом обозначить как п, а количество ДНК — как с, то генетическая формула клеток в стадии размножения соответствует 2п2с до S-периода и 2n4c после него.

· На стадии роста происходит увеличение клеточных размеров и превращение мужских и женских половых клеток в сперматоциты и овоциты I порядка, причем последние достигают больших размеров, чем первые. Одна часть накапливаемых веществ представляет собой питательный материал (желток в овоцитах), другая — связана с последующими делениями. Важным событием этого периода является репликация ДНК при сохранении неизменным числа хромосом. Последние приобретают двунитчатую структуру, а генетическая формула сперматоцитов и овоцитов I порядка приобретает вид 2n4с.

· Основными событиями стадии созревания являются два последовательных деления: редукционное и эквационное, которые вместе составляют. После первого деления образуются сперматоциты и овоциты II порядка (формула n2с), а после второго — сперматиды и зрелая яйцеклетка (формула пс).

В результате делений на стадии созревания каждый сперматоцит I порядка дает четыре сперматиды, тогда как каждый овоцит I порядка — одну полноценную яйцеклетку и редукционные тельца, которые в размножении не участвуют. Благодаря этому в женской гамете концентрируется максимальное количество питательного материала — желтка.

  • Процесс сперматогенеза завершается стадией формирования, или спермиогенеза. Ядра сперматид уплотняются вследствие сверхспирализации хромосом, которые становятся функционально инертными. Пластинчатый комплекс перемещается к одному из полюсов ядра, образуя акросомный аппарат, играющий большую роль в оплодотворении. Центриоли занимают место у противоположного полюса ядра, причем от одной из них отрастает жгутик, у основания которого в виде спирального чехлика концентрируются митохондрии. На этой стадии почти вся цитоплазма сперматиды отторгается, так что головка зрелого сперматозоида практически ее лишена.

Типы яйцеклеток:

Количество желтка-

1. Олиголецетальные (ланцетник)

2. Мезолецетальные (амфибии)

3. Полилецетальные (рыбы, птицы)

Месторасположение-

1. Изолецетальные (расположен диффузно, равномерно)

2. Телолецетальные ( с умеренным количествам желтка на нижнем вегетативном полюсе)

3. Резко телолецетальные (с большим количествам желтка, занимает всю яйцеклетку, кроме верхнего полюса)

4. Центролецетальные (желтка немного, но плотно в центре).

 

38 Оплодотворение. Полиэмбриония. Половой диморфизм. Гермафродитизм. Гермафродитизм как патологическое состояние у человека.

Оплодотворение — это процесс слияния половых клеток. Образующаяся в результате оплодотворения диплоидная клетка — зигота — представляет собой начальный этап развития нового организма.

Процесс оплодотворения складывается из трех последовательных фаз: а) сближения гамет; б) активации яйцеклетки; в) слияния гамет, или сингамии.

  • Сближение сперматозоида с яйцеклеткой обеспечивается совокупностью неспецифических факторов, повышающих вероятность их встречи и взаимодействия. К ним относят скоординированность наступления готовности к оплодотворению у самца и самки, поведение самцов и самок, обеспечивающее совокупление и осеменение, избыточную продукцию сперматозоидов, крупные размеры яйцеклетки, а также вырабатываемые яйцеклетками и сперматозоидами химические вещества, способствующие сближению и взаимодействию половых клеток. Эти вещества, называемые гамонами (гормоны гамет), с одной стороны, активируют движение сперматозоидов (гиногамоны I), а с другой — их склеивание (гиногамоны II). В особой структуре сперматозоида — акросоме —локализуются протеолитические ферменты. У млекопитающих большое значение имеет пребывание сперматозоидов в половых путях самки, в результате чего мужские половые клетки приобретают оплодотворяющую способность (капацитация), т.е. способность к акросомной реакции.

В момент контакта сперматозоида с оболочкой яйцеклетки происходит акросомная реакция, во время которой под действием протеолитических ферментов акросомы яйцевые оболочки растворяются. Далее плазматические мембраны яйцеклетки и сперматозоида сливаются и через образующийся вследствие этого цитоплазматический мостик цитоплазмы обеих гамет объединяются. Затем в цитоплазму яйца переходят ядро и центриоль сперматозоида, а мембрана сперматозоида встраивается в мембрану яйцеклетки. Хвостовая часть сперматозоида у большинства животных тоже входит в яйцо, но потом отделяется и рассасывается, не играя какой-либо роли в дальнейшем развитии.

  • 2. В результате контакта сперматозоида с яйцеклеткой происходит ее активация. Она заключается в сложных структурных и физико-химических изменениях. Благодаря тому что участок мембраны сперматозоида проницаем для ионов натрия, последние начинают поступать внутрь яйца, изменяя мембранный потенциал клетки. Затем в виде волны, распространяющейся из точки соприкосновения гамет, происходит увеличение содержания ионов кальция, вслед за чем также волной растворяются кортикальные гранулы. Выделяемые при этом специфические ферменты способствуют отслойке желточной оболочки; она затвердевает, это оболочка оплодотворения. Все описанные процессы представляют собой так называемую кортикальную реакцию. Одним из значений кортикальной реакции является предотвращение полиспермии, т.е. проникновения в яйцеклетку более одного сперматозоида. У млекопитающих кортикальная реакция не вызывает образования оболочки оплодотворения, но суть ее та же.

Активация яйцеклетки завершается началом синтеза белка на трансляционном уровне, поскольку мРНК, тРНК, рибосомы и энергия были запасены еще в овогенезе. Активация яйцеклетки может начаться и протекать до конца без ядра сперматозоида и без ядра яйцеклетки, что доказано опытами по энуклеации зиготы.

3. Яйцеклетка в момент встречи со сперматозоидом обычно находится на одной из стадий мейоза, заблокированной с помощью специфического фактора. У большинства позвоночных этот блок осуществляется на стадии метафазы II; у многих беспозвоночных, а также у трех видов млекопитающих (лошади, собаки и лисицы) блок происходит на стадии диакинеза. В большинстве случаев блок мейоза снимается после активации яйцеклетки вследствие оплодотворения. В то время как в яйцеклетке завершается мейоз, ядро сперматозоида, проникшее в нее, видоизменяется. Оно принимает вид интерфазного, а затем профазного ядра. За это время удваивается ДНК и мужской пронуклеус получает количество наследственного материала, соответствующего п2с, т.е. содержит гаплоидный набор редуплицированных хромосом.

Ядро яйцеклетки, закончившее мейоз, превращается в женский пронуклеус, также приобретая п2с. Оба пронуклеуса проделывают сложные перемещения, затем сближаются и сливаются (синкарион), образуя общую метафазную пластинку. Это, собственно, и есть момент окончательного слияния гамет — сингамия. Первое митотическое деление зиготы приводит к образованию двух клеток зародыша (бластомеров) с набором хромосом 2n2c в каждом.

 

Полиэмбриония- способ бесполого размножения организмов, когда идет развитие более одного зародыша из одной зиготы у животных или образование нескольких зародышей в одном семени у растений.

Слово происходит от греческого «poly» — много и «embrion» — зародыш.

У животных различают специфическую (свойственную данному виду) полиэмбрионию, и спорадическую, или случайную. Специфическая полиэмбриония встречается у животных различных системаческих групп (мшанок, насекомых, броненосцев и т. д.)

Её биологический смысл заключается в увеличении числа потомков, развивающихся из одной оплодотворенной яйцеклетки.

Спорадическая полиэмбриония вызвана воздействием случайных факторов и встречается у многих видов животных, в том числе у человека. В результате полиэмбрионии развиваются два организма, абсолютно идентичных по генотипам, но имеющих различия в фенотипе (последствия воздействия среды).

Половой диморфизм- анатомические различия между самцами и самками одного и того же биологического вида, исключая различия в строении половых органов. Половой диморфизм может проявляться в различных физических признаках:

 

  • Размер. У млекопитающих и многих видов птиц самцы более крупные и тяжёлые, чем самки. У земноводных и членистоногих самки, как правило, крупнее самцов.
  • Волосяной покров. Борода у мужчин, грива у львов или бабуинов.
  • Окраска. Цвет оперения у птиц, особенно у утиных.
  • Кожа. Характерные наросты или дополнительные образования, такие как рога у оленевых, гребешок у петухов.
  • Зубы. Бивни у самцов индийского слона, более крупные клыки у самцов моржей и кабанов.

Некоторые животные, прежде всего рыбы, демонстрируют половой диморфизм только во время спаривания.

Гермафродитизмом называют состояние, при котором у живого организма проявляются анатомические и/или физиологические признаки обоих полов.

Само слово «гермафродит» происходит из греческой мифологии. Так, по легендам, звали сына двух богов – Гермеса и Афродиты. В пятнадцатилетнем возрасте он влюбился в нежно любившую его Салмакиду и, по обоюдной просьбе молодых людей, боги соединили их в одно существо.

У некоторых растений и животных гермафродитизм является естественным состоянием. У людей гермафродитизм относится к патологиям развития, которые могут быть обусловлены генетически или возникать при нарушениях внутриутробного развития (в том числе, при заболеваниях матери во время беременности или влиянии на плод сверхдоз гормонов или других факторов).

Гермафродитизм у людей встречается достаточно редко. Иногда о гермафродитизме говорят при некоторых генетических нарушениях, которые сопровождаются слабо развитыми первичными или вторичными половыми признаками.

Различают истинный и ложный гермафродитизм у людей.

При истинном гермафродитизме в организме одновременно присутствуют и женские и мужские половые хромосомы. В норме все или практически все клетки мужского организма имеют кариотип (хромосомный набор) 46ХУ, а женского – 46ХХ. Именно наличие У-хромосомы определяет развитие внутренних и наружных половых органов по мужскому типу.

При истинном гермафродитизме часть клеток имеют мужской кариотип, а часть женский. Вследствие этого половые железы имеют признаки и мужского и женского организма, а наружные половые органы формируются по смешанному типу.

При ложном гермафродитизме у людей половые железы отвечают какому-либо одному полу, а наружные половые органы могут быть сформированы по другому полу либо иметь смешанное развитие, имеющее и мужские и женские черты. Обычно выделяют наружный, внутренний и полный ложный гермафродитизм – в зависимости от соответствия внутренним половым органам наружных.

 

Следует отметить, что неправильное развитие наружных половых органов далеко не всегда является признаком гермафродитизма. Оно может быть обусловлено врожденной дисфункцией коры надпочечников, гипофиза и рядом других факторов.

Гермафродитизм у людей требует как хирургической коррекции, так и психологической поддержки. Оптимальным является выбор пола ребенка с учетом сформированных наружных половых органов и половых желез. К сожалению, в возрасте, когда половые железы начинают функционировать, делать пластику наружных половых органов уже поздно. Исходя из этого, при гермафродитизме у людей часто используют генетическую диагностику пола, в соответствии с которой принимают решение о пластике половых органов.

Внутренние половые органы при гермафродитизме достаточно часто находятся в недоразвитом состоянии. Поэтому с наступлением переходного возраста гормональный фон корректируют искусственно с помощью заместительной терапии. По этой же причине репродуктивное здоровье при гермафродитизме часто нарушено.

Иногда гермафродизмом пользуются в спорте. Например спортсменку Кастер Семенью, которую подозревают в гермафродитизме. Высокая концентрация мужских гормонов в организме позволяет ей показывать высочайшие для женщин результаты.

 

39 Биологические аспекты репродукции человека. Особенности строения яйцеклетки и сперматозоида человека. Тип развития, особенности гаметогенеза, время наступления половой зрелости. Особенности женского полового цикла. Искусственное и экстракорпоральное оплодотворение.

 

РЕПРОДУКЦИЯ ЧЕЛОВЕКА(размножение человека), физиологическая функция,необходимая для сохранения человека как биологического вида. Процесс размножения у человека начинается с зачатия (оплодотворения), т.е. с момента проникновения мужской половой клетки (сперматозоида) в женскую половую клетку (яйцо, или яйцеклетку). Слияние ядер этих двух клеток – начало формирования нового индивида. Человеческий зародыш развивается в матке женщины во время беременности, которая длится 265–270 дней. В конце этого периода матка начинает самопроизвольно ритмически сокращаться, сокращения становятся все сильнее и чаще; амниотический мешок (плодный пузырь) разрывается и, наконец, через влагалище «изгоняется» зрелый плод – рождается ребенок. Вскоре отходит и плацента (послед). Весь процесс, начиная с сокращений матки и кончая изгнанием плода и последа, называется родами.

Гаметогенез — процесс образования яйцеклеток (овогенез) и сперматозоидов (сперматогенез)подразделяется на ряд стадий.

В стадии размножения диплоидные клетки, из которых образуются гаметы, называют сперматогониями и овогониями. Эти клетки осуществляют серию последовательных митотических делений, в результате чего их количество существенно возрастает. Сперматогонии размножаются на протяжении всего периода половой зрелости мужской особи. Размножение овогоний приурочено главным образом к периоду эмбриогенеза. У человека в женском организме этот процесс наиболее интенсивно протекает в яичниках между 2-м и 5-м месяцами внутриутробного развития. К 7-му месяцу большая часть овоцитов входит в профазу I мейоза.

 

Стадия размножения- Сперматогонии и Овогонии

На стадии роста происходит увеличение клеточных размеров и превращение мужских и женских половых клеток в сперматоциты и овоциты I порядка, причем последние достигают больших размеров, чем первые.

 На стадии созревания основными событиями являются два последовательных деления: редукционное и эквационное, которые вместе составляют мейоз. После первого деления образуются сперматоциты и овоциты II порядка (формула n2с), а после второго — сперматиды и зрелая яйцеклетка (пс).

В результате делений на стадии созревания каждый сперматоцит I порядка дает четыре сперматиды, тогда как каждый овоцит I порядка — одну полноценную яйцеклетку и редукционные тельца, которые в размножении не участвуют. Благодаря этому в женской гамете концентрируется максимальное количество питательного материала — желтка.










Последнее изменение этой страницы: 2018-04-12; просмотров: 246.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...