Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вопрос 17. Мембраны, их молекулярная структура




/. Виды и функции мембран

2. Состав и структура мембраны

3. Свойства мембран

1. Протоплазма ограничена наружной мембраной — плазмолеммой и содержитсистему внутренних мембран (эндомембран).Клеточное ядро, митохондрии и пластиды тоже имеют внутренние двойные мембраны. Толщина мембраны чаще всего составляет 6—12 нм.

Функции мембран состоят в следующем:

• ограничивают замкнутые объемы различной величины и фор­мы (пузырьки, уплощенные полости или целые клетки), созда­вая препятствие для диффузии. Образуются отдельные реакци­онные объемы (компартменты);

• избирательно пропускают некоторые вещества и активно нака­чивают другие, что связано с затратой энергии.

Каждая мембрана отделяет протоплазматическое пространство от неплазматического:

• плазмолемма - от окружающей клетку среды;

• мембраны пузырьков - от неплазматического содержимого этих пузырьков;

• обе мембраны ядерной оболочки - от неплазматического про­странства, находящегося между ними.

Мембраны (за исключением мембран митохондрий и пластид) используются в процессах онтогенеза и могут превращаться друг в друга (течение мембран). Например, из эндоплазматиче-ского ретикулума образуются мембраны аппарата Гольджи, а последние служат материалом для регенерации плазмолеммы.

2. Мембраны представляют собой двумерные жидкокристалличе­ские растворы глобулярных белков в липидах. Структурную основу мембран составляют:

- липиды, среди которых преобладают фосфолипиды (например, лецитин), а в мембранах пластид — гликолипиды;

• белки, которые в мембранах выполняют определенные функ­ции. Они являются:

ферментами;

• транспортными белками;

• стерины (у животных в основном холестерин);

• гликопротеиды;

• некоторые неорганические соли.

Основная структура всех мембран представляет собой два па­раллельных слоя липидов (бимолекулярный слой). Мембран­ные липиды — амфипатические молекулы, имеющие:

• гидрофобную часть (углеводородные остатки жирных кислот и сфингозина);

• гидрофильную часть (фосфат, холин, комамин, сахар и т. п.).

Такие молекулы образуют на водной поверхности мономолеку­лярный слой. В водном окружении и в клетке образуются бимо­лекулярные слои: гидрофобные части различных молекул повер­нуты дальше от водного окружения, т. е. друг к другу, и удер­живаются вместе сильными гидрофобными взаимодействиями и слабыми силами Ван-дер-Ваальса.

Таким образом, мембраны на обеих наружных поверхностях гидрофильны, а внутри — гидрофобны. Поскольку гидрофиль­ные части молекул поглощают электроны, они видны в элек­тронном микроскопе как два темных слоя.

3.При низких температурахуглеводородные остатки образуют подобие кристаллической решетки и мембраны переходят в со­стояние геля. При физиологических температурахмембраны на­ходятся в жидкокристаллическом состоянии: углеводородные остатки вращаются вокруг своей продольной оси и диффунди­руют в плоскости слоя. Реже они перескакивают из одного слоя в другой, не нарушая прочных гидрофобных связей.

Периферические белки мембран гидрофильны, так как на по­верхности их глобулярной молекулы преобладают гидрофиль­ные аминокислоты (с полярными группами). Они относитель­но непрочно связаны с гидрофильными поверхностями мем­бран, в основном электростатическими силами, т. е. ионными связями.

Интегральные мембранные белки частично гидрофобны, так как на поверхности их молекул находятся главным образом гидро­фобные аминокислотные остатки. Эти белки прочно укрепле­ны в гидрофобной толще мембраны гидрофобными взаимо­действиями, а гидрофильные части молекул выступают из мембраны наружу. Некоторые интегральные белки мембран способны, как и липидные молекулы, диффундировать в плос­кости мембраны, другие встроены неподвижно.

Описанная жидкостно-мозаичная модель структуры мембраны (модель Сингера) заменила принятую ранее модель Даниели {без интегральных белков). Благодаря гидрофобным взаимо­действиям мембраны способны растягиваться (расти) при включении новых молекул, а в случае разрыва образовавшиеся края могут снова смыкаться.

Мембраны полупроницаемы; они обладают мельчайшими пора­ми, через которые диффундируют вода и другие небольшие гидрофильные молекулы. Для этого используются внутренние гидрофильные области интегральных мембранных белков или отверстия между соприкасающимися интегральными белками (туннельные белки).

Вопрос 18. Плазматическая мембрана

1. Характеристика плазмолемм

2. Плазматическая мембрана прокариотических клеток

1. Плазмолемма, толщина которой около 8 нм, выполняет роль барьера для диффузии веществ из клетки, что существенно и для растительных клеток, так как клеточная стенка, как прави­ло, проницаема.

Встроенные в мембрану транспортные молекулы переносят определенные вещества. Мембранные ферменты принимают лишь ограниченное участие в метаболизме. У растений плазмо­лемма участвует в обмене компонентов клеточной стенки, в нервных клетках — в проведении импульсов.

При клеточном делении дочерние клетки получают плазмолемму от материнской клетки. При росте плазмолеммы (связанном с делением и ростом клеток) и при ее регенерации она образует­ся из пузырьков Гольджи (течение мембран).

Плазматическая мембрана животных клеток покрыта снаружи полисахаридным слоем толщиной от 10 до 20 нм — гликокалик-сом. разветвленные остатки полисахаридов ковалентно связа­ны с белками и сфингозинсодержащими липидами.

Полисахариды состоят:

• из галактозы;

• маннозы;

• фукозы;

• N-ацетилгалактозамина;

• N-ацетилглюкозамина;

• остатков сиаловой кислоты (в концевых положениях). Сиало-выми кислотами называют N-гликозил- и N-ацетилнейра-миновые кислоты: нейраминовая кислота — это циклический конденсат маннозы и пирувата.

Из компонентов гликокаликса хорошо изучен гликопротеид гликофорин в мембранах эритроцитов. Он состоит на 60% изуглеводов и несет (подобно другим гликопротеидам и гликолипидам плазматических мембран животных клеток) специфиче­ские антигены групп крови, а также участки, связывающие различные вирусы и лектины.

Карбоксильный конец полипептидной цепи выступает из мем­браны с ее внутренней стороны, а с наружной стороны нахо­дится аминный конец с многочисленными сильно разветвлен­ными боковыми цепями полисахаридов.

2. Отличительные особенности плазматической мембраны прокар-иотических клетокзаключаются в следующем:

• содержит в качестве интегральных белков переносчики электро­нов и ферменты дыхательной цепи;

• образует разного рода выпячивания (одни осуществляют дыха­ние, другие — фотосинтез и дыхание).

Мезосомы бактерий представляют собой пластинчатые, труб­чатые или везикулярные тельца, лежащие в карманах мембра­ны. Внутреннее пространство мезосом частично сообщается с внеклеточной средой. Мезосомы образуются в результате сложного складывания и слияния впяченных участков мем­браны. Их функция неизвестна. Сходные структуры описаны у сине-зеленых водорослей и в клетках грибов (хотя последние относятся к эукариотам).










Последнее изменение этой страницы: 2018-04-12; просмотров: 197.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...