Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вороний глаз - ParisguadrifoliaL., Ландышмайский - Convallaria majalis L.




,Лютикедкий - Ranunculus acer L.

. – –

Билет 89

1. Неклеточные формы жизни. Вирусы.

Строение вирусов. Наряду с одно- и многоклеточными организмами в природе существуют и другие формы жизни. Таковыми являются вирусы, не имеющие клеточного строения. Они представляют собой переходную форму между неживой и живой материей.

Вирусы (лат. virus — яд) были открыты в 1892 г. русским ученым Д. И. Ивановским при исследовании мозаичной болезни листьев табака.

Каждая вирусная частица состоит из РНК или ДНК, заключенной в белковую оболочку, которую называют капсидом. Полностью сформированная инфекционная частица называется вирионом. У некоторых вирусов (например, герпеса или гриппа) есть еще и дополнительная липопротеидная оболочка, возникающая из плазматической мембраны клетки хозяина.

Поскольку в составе вирусов присутствует всегда один тип нуклеиновой кислоты — ДНК или РНК, вирусы делят также на ДНК-содержащие и РНК-содержащие. При этом наряду с двухцепочечными ДНК и одноцепочечными РНК встречаются одноцепочечные ДНК и двухцепочечные РНК. ДНК могут иметь линейную и кольцевую структуры, а РНК, как правило, линейную. Подавляющее большинство вирусов относится к РНК-типу.

Вирусы способны размножаться только в клетках других организмов. Вне клеток организмов они не проявляют никаких признаков жизни. Многие из них во внешней среде имеют форму кристаллов. Размеры вирусов колеблются в пределах от 20 до 300 нм в диаметре.

Хорошо изучен вирус табачной мозаики, имеющий палочковидную форму и представляющий собой полый цилиндр. Стенка цилиндра образована молекулами белка, а в его полости расположена спираль РНК (рис. 5.2). Белковая оболочка защищает нуклеиновую кислоту от неблагоприятных условий внешней среды, а также препятствует проникновению ферментов клеток к РНК и ее расщеплению.

Молекулы вирусной РНК могут самовоспроизводиться. Это означает, что вирусная РНК является источником генетической информации и одновременно иРНК. Поэтому в пораженной клетке в соответствии с программой нуклеиновой кислоты вируса на рибосомах клетки хозяина синтезируются специфические вирусные белки и осуществляется процесс самосборки этих белков с нуклеиновой кислотой в новые вирусные частицы. Клетка при этом истощается и погибает. При поражении некоторыми вирусами клетки не разрушаются, а начинают усиленно делиться, часто образуя у животных, в том числе и человека, злокачественные опухоли.

2. Этапы развития генетики.

В своем развитии генетика прошла ряд этапов.

Первый этап ознаменовался открытием Г. Менделем (1865) факторов наследственности и разработкой гибридологического метода,т. е. правил скрещивания организмов и учета признаков у их потомства. Мендель впервые осознал, что, начав с самого простого случая - различия по одному-единственному признаку и постепенно усложняя задачу, можно надеяться распутать весь клубок закономерностей наследования признаков. Менделевские законы наследственности заложили основу теории гена - величайшего открытия естествознания XX в., а генетика превратилась в быстро развивающуюся отрасль биологии. В 1901-1903 г.г. де Фриз выдвинул мутационную теорию изменчивости, которая сыграла большую роль в дальнейшем развитии генетики.

Второй этап характеризуется переходом к изучению явлений наследственности на клеточном уровне (цитогенетика). Т. Бовери (1902-1907), У .Сэттон и Э .Вильсон (1902-1907) установили взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления (митоз) и созревания половых клеток (мейоз).

Третий этап в развитии генетики отражает достижения молекулярной биологии. И связан с использованием методов и принципов точных наук - физики, химии, математики, биофизики и других. А также изучение явлений жизни на уровне молекул. Объектами генетических исследований стали грибы, бактерии, вирусы. На этом этапе были изучены взаимоотношения между генами и ферментами. Таким образом, третий, современный этап развития генетики открыл огромные перспективы направленного вмешательства в явления наследственности и селекции растительных и животных организмов, выявил важную роль генетики в медицине, в частности, в изучении закономерностей наследственных болезней и физических аномалий человека.

3. Экологические основы выделения групп паразитов. Классификация паразитических форм животных.

ПАРАЗИТЫ И ИХ ХАРАКТЕРИСТИКА

       "Паразиты - это такие организмы, которые используют другие живые организмы в качестве источника пищи и среды обитания, возлагая при этом частично или полностью на своих хозяев задачу регуляции своих взаимоотношений с окружающей внешней средой" (Догель В. А., 1947). Паразитов в зависимости от среды обитания делят на две большие группы: экто- и эндопаразиты.

       К эктопаразитам относят животных, обитающих на теле человека. К ним относятся, в основном, членистоногие. Эктопаразиты могут быть постоянными (например, вши), если весь жизненный цикл проводят на покровах тела животного, и временными (клещи, комары, мухи и др.), которые находятся на теле человека только в момент питания (сосания крови).

       Эндопаразитов в зависимости от локализации в организме человека классифицируют на: - внутриклеточных (лейшмании, плазмодии, токсоплазма); - тканевых (дизентерийная амеба, трипаносомы, балантидий, шистосомы, филярии, ришта, личинки трихинеллы, чесоточный зудень и др.); - внутриорганных (описторхис, клонорхис, фасциола, парагонимус и др.); - полостных (свиной и бычий цепни, широкий лентец, аскарида, острица, анкилостома, власоглав и др).

       Все эндопаразиты являются постоянными паразитами человека. Вообще ни один орган и ни одна ткань не застрахованы от возможности поселения в них паразита. Один и тот же паразит может жить в различных органах своего хозяина (эхинококк, финки свиного цепня). Некоторые паразиты могут мигрировать по телу хозяина, пока не достигнут окончательного места обитания (аскарида, некатор, анкилостома).

       Когда речь идет о паразитизме, то всегда подразумевается два или несколько организмов разных видов, один из которых является паразитом, а другой - его хозяином. Паразитов, которые инвазируют и развиваются в теле одного хозяина, называют моноксенными или однохозяинными. Например, карликовый цепень, острица паразитируют только у человека. Большинство моноксенных гельминтов (аскарида, власоглав, анкилостома и др.) для завершения цикла развития обязательно нуждаются в выходе оплодотворенного яйца из хозяина во внешнюю среду.

       Эндопаразиты, которые для завершения своего жизненного цикла нуждаются в двух и более разных хозяевах, называются 2 0гетероксенными или многохозяинными (малярийный плазмодий, свиной и бычий цепни, сосальщики и др.)

       Явление паразитизма носит всеобщий характер в природе. Известно свыше 50 тыс. видов паразитов, 500 из которых могут паразитировать у человека.

       Паразиты имеются среди представителей типа Простейших. Так, в классе Саркодовых имеются паразитические амебы; в классе Жгутиковых - лейшмании, трипаносомы, лямблии, трихомонады; в классе Споровиков - возбудители малярии, токсоплазма; в классе Инфузорий - балантидий. В типе Плоских червей паразитами человека являются сосальщики и ленточные черви. В типе Круглых червей имеется также много паразитов животных и растений. Наконец, в типе Членистоногих имеются паразиты в классах Паукообразных и Насекомых. Биологические особенности жизненных циклов гельминтов, относящихся к эндопаразитам, положены К. И. Скрябиным и Р. С. Шульцем (1931) в основу их эпидемиологической классификации.

       В настоящее время всех гельминтов делят на геогельминтов, биогельминтов и контактных гельминтов.

       Геогельминты - это черви-паразиты, у которых развитие инвазионной личинки из оплодотворенного яйца происходит через немытые овощи, фрукты, на которых находятся инвазионные яйца (например, аскариды, власоглава), либо личинками при непосредственном контакте с почвой (например, анкилостомы, некатора).

       Биогельминты - это черви паразиты, у которых жизненные циклы осуществляются обязательно со сменой хозяев (все трематоды, цестоды, филярии, трихинелла и др.)

       Контактные гельминты - это такие черви-паразиты, цикл развития которых может полностью проходить в организме человека без выхода во внешнюю среду (карликовый цепень, острица).

Билет 90

В1..Цитологические основы бесполого размножения. Механизмы поддержания постоянства кариотипа поколений организмов и клеток.

Нехромосомное (цитоплазматическое) наследование. Относительная роль саморепродуцирующихся органоидов цитоплазмы и ядра в наследовании. Особенности нехромосомного (цитоплазматического) наследования и методы его изучения. Плазмидное наследование. Содержащие ДНК цитоплазматические органоиды клетки. Наследование через пластиды и митохондрии. Особенности организации генома митохондрий. Плазмогены. Цитоплазматическая мужская стерильность. Эндосимбиоз. Понятие о плазмоне. Генотип как система.

При половом размножении процесс воспроизведения организмов осуществляется с участием специализированных половых клеток — гамет, вступающих в оплодотворение. При оплодотворении наследственный материал двух родительских гамет сливается, образуя генотип организма нового поколения — зиготы. Чтобы потомки получили соответствующую программу для развития видовых и индивидуальных характеристик, они должны обладать кариотипом, которым располагало предыдущее поколение. В такой ситуации поддержание постоянства кариотипа в ряду поколений организмов достигается предварительным уменьшением вдвое набора хромосом в гаметах, который восстанавливается до диплоидного при их оплодотворении: п + п = 2n.

Образование гаплоидных гамет осуществляется в ходе гаметогенеза путем особой формы клеточного деления — мейоза. При мейозе из клеток с диплоидным набором In образуются гаметы с гаплоидным набором хромосом п (см. гл. 5). Такой результат достигается благодаря тому, что после однократного удвоения ДНК клетка делится дважды. В отличие от митоза в первом мейотическом делении в результате конъюгации гомологичные хромосомы объединяются в пары — биваленты. Последующее расхождение гомологов к разным полюсам веретена деления приводит к образованию клеток с гаплоидным набором хромосом: 2n4с → п2с. На рис. 3.70 представлены особенности первого деления мейоза в сравнении с митозом. В ходе второго мейотического деления сестринские хроматиды каждой хромосомы, как и в митозе, распределяются между дочерними клетками с наследственным материалом

В2. Законы Г.Менделя и их цитологическое обоснование.

Главной заслугой Г. Менделя является то, что для описания характера расщепления он впервые применил количественные методы, основанные на точном подсчете большого числа потомков с контрастирующими вариантами признаков. Г. Мендель выдвинул и экспериментально обосновал гипотезу о наследственной передаче дискретных наследственных факторов. В его работах, выполнявшихся в период с 1856 по 1863 г., были раскрыты основы законов наследственности. Результаты своих наблюдений Г. Мендель изложил в брошюре «Опыты над растительными гибридами» (1865).

Мендель следующим образом формулировал задачу своего исследова­ния. «До сих пор,– отмечал он во «Вступительных замечаниях» к своей работе,– не удалось установить всеобщего закона образования и развития гибридов… Окончательное решение этого вопроса может быть достигнуто только тогда, когда будут произведены детальные опыты в различнейших растительных семействах. Кто пересмотрит работы в этой области, тот убедится, что среди многочисленных опытов ни один не был произведен в том объеме и таким образом, чтобы можно было определить число различных форм, в которых появляются потомки гибридов, с до­стоверностью распределить эти формы по отдельным поколениям и уста­новить их взаимные численные отношения».

Первое, на что Мендель обратил внимание, – это выбор объекта. Для своих исследований Мендель выбрал удобный объект – чистые линии (сорта) гороха посевного (PisumsativumL.), различающиеся по одному или немногим признакам. Горох как модельный объект генетических исследований характеризуется следующими особенностями:

1. Это широко распространенное однолетнее растение из семейства Бобовые (Мотыльковые) с относительно коротким жизненным циклом, выращивание которого не вызывает затруднений.

2. Горох – строгий само­опылитель, что снижает вероятность заноса нежелательной по­сторонней пыльцы. Цветки у гороха мотылькового типа (с парусом, веслами и лодочкой); в то же время строение цветка гороха таково, что техника скрещивание растений относительно проста.

3. Существует множество сор­тов гороха, различающихся по одному, двум, трем и четырем наследуе­мым признакам.

Едва ли не самым существенным во всей работе было определение числа признаков, по которым должны различаться скрещиваемые расте­ния. Мендель впервые осознал, что, только начав с самого простого слу­чая – различия родителей по одному-единственному признаку – и посте­пенно усложняя задачу, можно надеяться распутать клубок фактов. Стро­гая математичность его мышления выявилась здесь с особенной силой. Именно такой подход к постановке опытов позволил Менделю четко пла­нировать дальнейшее усложнение исходных данных. Он не только точно определял, к какому этапу работы следует перейти, но и математически строго предсказывал будущий результат. В этом отношении Мендель стоял выше всех современных ему биологов, изучавших явления наследствен­ности уже в XX в.

Скрещивая растения, различающиеся и по другим признакам, Мендель во всех без ис­ключения опытах получил аналогичные результаты: всегда в первом гибридном поколении проявлялся признак только одного из родительских сортов, а во втором поколении наблюдалось расщепление в соотношении 3:1.

На основании своих экспериментов Мендель ввел понятие доминантного и рецессивного признаков. Доминантные признаки переходят в гибридные расте­ния совершенно неизменными или почти неизменными, а рецессивные становятся при гибридизации скрытыми. Заметим, что к подобным выводам пришли французские естествоиспытатели Сажрэ и Нодэн, которые работали с тыквенными растениями, имеющими раздельнополые цветки. Однако величайшая заслуга Менделя в том, что он впер­вые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков.

Для дальнейшего анализа наследственной природы полученных гибри­дов Мендель проводил скрещивания между сортами, различающимся по двум, трем и более признакам, то есть проводит дигибридное и тригибридное скрещивания. Далее он изучил еще несколько поколений гибридов, скрещиваемых между собой. В результате получили прочное научное обоснование сле­дующие обобщения фундаментальной важности:

1. Явление неравнозначности наследственных элементарных признаков (доминантных и рецессивных), отмеченное Сажрэ и Нодэном.

2. Явление расщепления признаков гибридных организмов в результа­те их последующих скрещиваний. Были установлены количественные за­кономерности расщепления.

3. Обнаружение не только количественных закономерностей расщепле­ния по внешним, морфологическим признакам, но и определение соотно­шения доминантных и рецессивных задатков среди форм, с виду не отличимых от доминантных, но являющихся смешанными (гетерозиготными) по своей природе. Правильность последнего положения Мендель подтвер­дил, кроме того, путем возвратных скрещиваний гибридов первого поколения с родительскими формами.

Таким образом, Мендель вплотную подошел к проблеме соотношения между наследственными задатками (наследственными факторами) и оп­ределяемыми ими признаками организма. Мендель ввел понятие дискретного на­следственного задатка, не зависящего в своем проявлении от других за­датков. Эти задатки сосредоточены, по мнению Менделя, в зачатковых (яйцевых) и пыльцевых клетках (гаметах). Каждая гамета несет по одно­му задатку. Во время оплодотворения гаметы сливаются, формируя зиго­ту; при этом в зависимости от сорта гамет, возникшая из них зигота получит те или иные наследственные задатки

В3.Пути происхождения групп паразитов.

       Условия жизни паразита внутри тела своего хозяина резко отличаются от свободного существования во внешней среде. Эндопаразиту не приходится отыскивать себе пищу, у него нет необходимости в таких органах чувств, как глаза.

       Приспособление паразита к таким специальным условиям жизни неизбежно отражается на его организации и сводится к двум процесса: 1) к исчезновению тех органов, которые не требуются в новых условиях существования; 2) к возникновению, развитию или преобразованию органов, работа которых связана с особенностями жизни или питания на поверхности тела или внутри организма.

       Вся совокупность изменений организации паразитов сводится к упрощению строения и нередко к изменению внешнего вида.

       Паразитизм как явление живой природы возник у свободноживущих организмов в результате различных форм симбиоза и хищничества.

       Различают несколько категорий симбиоза:

1) мутуализм - такая форма сожительства, при которой оба партнера приносят друг другу какую либо пользу (лишайники - сожительство водорослей и грибов); 

2) синойкия - сожительство, при котором один партнер использует другого в качестве временного убежища (рыба-горнак и двустворчатый моллюск беззубка);

3) коменсализм - такая категория сожительства, при которой один вид животного использует другого для питания остатками пищи другого вида (рыба-прилипала и акула);

4) паразитизм.

       Допускается, что паразитизм появился вскоре после возникновения жизни.

       В процессе эволюции пары сожителей могут видоизменяться так, что один партнер начинает как-либо вредить другому. В итоге симбиоз переходит в паразитизм (один из симбиоза становится паразитом, другой - хозяином паразита).

       Другой путь возникновения паразитизма может быть связан с приспособлением мелких организмов к повторному питанию за счет живого организма хозяина, которому при этом наносится ущерб.

       Наконец, часть паразитов развилась благодаря способности их предков некоторое время жить в каких-либо хозяевах на положении ложных паразитов. Возникновение паразитизма шло по-разному у экто- и эндопаразитов.

       Эктопаразитизм формировался прежде всего у свободноживущих хищных клещей, насекомых и других животных за счет удлинения сроков питания и времени пребывания на хозяине. Большую роль в эволюции эктопаразитов сыграли переход от полифагии к монофагии и специализации питания, в частности, питание кровью (клещи, комары, москиты, вши, кровососущие мухи).

       Эндопаразитизм, в частности, кишечный как наиболее распространенный, формировался в результате случайного заноса цист простейших и яиц гельминтов в желудчно-кишечный тракт животного или человека. В результате случайных контактов у паразитов вырабатывались такие особенности, которые способствовали установлению паразитических отношений.

       Эндопаразитизм мог возникнуть также в результате изменения инстинкта откладки яиц не на гниющий органический материал, а на раневую поверхность или в полости тела человека, сообщающиеся с внешней средой (вольфартова муха).

       Кровепаразитизм рассматривается как вторичное явление, явившееся следствием первичного кишечного паразитизма. При этом считают, что современные кровепаразиты позвоночных (например, плазмодии) были кишечными паразитами беспозвоночных, а с переходом хозяев к гематофагии приспособились к жизни в кровяном русле позвоночных, сохранив при этом связь и с беспозвоночными.

       У одноклеточных в процессе эволюции сформировались органоиды передвижения (у трипаносом); для проникновения в цитоплазму клетки хозяина - коноид. Многоклеточные организмы в процессе адаптации к паразитизму потеряли ряд морфологических структур. Например, у цестод нет кишечника, слабо выражен мышечный слой. Наряду с этим возникли и адаптации прогрессивного характера: мощные органы фиксации (присоски, ботрии, крючья), большая плодовитость, быстрый темп роста, роль кутикулы как защитного барьера от пищеварительных ферментов хозяина и т.д.

Билет 91

В1. Жизненный цикл клетки. Регуляция митотического цикла.

Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание жизненного цикла клетки (клеточного цикла). Клеточный цикл — это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.

Важным компонентом клеточного цикла является митотический (пролиферативный) цикл —комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении (рис. 2.10).

Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Длительность цикла регулируется путем изменения продолжительности всех его периодов. У млекопитающих время митоза составляет 1—1,5 ч, 02-периода интерфазы —2—5 ч, S-периода интерфазы — 6—10 ч.

Биологическое значение митотического цикла состоит в том, что он обеспечивает преемственность хромосом в ряду клеточных поколений, образование клеток, равноценных по объему и содержанию наследственной информации. Таким образом, цикл является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.

Главные события митотического цикла заключаются в редупликации (самоудвоении) наследственного материала материнской клетки и в равномерном распределении этого материала между дочерними клетками. Указанным событиям сопутствуют закономерные изменения химической и морфологической организации хромосом — ядерных структур, в которых сосредоточено более 90% генетического материала эукари-отической клетки (основная часть внеядерной ДНК животной клетки находится в митохондриях).

Хромосомы во взаимодействии с внехромосомными механизмами обеспечивают: а) хранение генетической информации, б) использование этой информации для создания и поддержания клеточной организации, в) регуляцию считывания наследственной информации, г) удвоение (самокопирование) генетического материала, д) передачу его от материнской клетки дочерним.

В организме митоз контролируются системой нейрогуморальной регуляции, которая осуществляется нервной системой, гормонами надпочечников, гипофиза, щитовидной и половых желёз, а также местными факторами (продукты тканевого распада, функциональная активность клеток). Взаимодействие различных регуляторных механизмов обеспечивает как общие, так и местные изменения митотической активности. Митоз опухолевых клеток выходят из-под контроля нейрогуморальной регуляции.

Выражением регуляции митоза в связи с взаимодействием организма и среды служит суточный ритм деления клеток. В большинстве органов ночных животных максимум митоза отмечается утром, а минимум - в ночное время. У дневных животных и человека отмечается обратная динамика суточного ритма. Суточный ритм митоза - следствие цепной реакции, в которую вовлекаются ритмические изменения внешней среды (освещённость, температура, режим питания и др.), ритм функциональной активности клеток и изменения процессов обмена веществ.

Нарушения митоза. При различных патологических процессах нормальное течение митоза нарушается. Выделяют 3 основных вида патологии митоза: 1) Повреждения хромосом (набухание, склеивание, фрагментация, образование мостов, повреждения центромеров, отставание отдельных хромосом при движении, нарушение их спирализации и деспирализации, раннее разъединение хроматид, образование микроядер. 2) Повреждения митотического аппарата (задержка митоза в метафазе, многополюсный, моноцентрический и асимметричный митоз, трёхгрупповая и полая метафазы). Особое значение в этой группе патологий митоза имеет колхициновый митоз, или К-митоз, который вызывается алкалоидом колхицином (отсюда название), а также колцемидом, винбластином, винкристином, аценафтеном и др. т. н. статмокинетическими ядами, используемыми в качестве мутагенов. К-митозы возникают и самопроизвольно в культуре ткани и опухолях. При К-митозе нарушаются расхождение центриолей и поляризация ими веретена деления, подвергается дезорганизации митотический аппарат, не происходит разъединения хроматид (К-пары). 3) Нарушения цитотомии. Патологические митозы возникают после воздействия митотических ядов, токсинов, экстремальных факторов (ионизирующее излучение, аноксия, гипотермия), при вирусной инфекции и в опухоли. Резкое увеличение числа патологических митозов типично для злокачественных опухолей.

В2. .Статистический характер законов Г.Менделя. Условие их выполнения.










Последнее изменение этой страницы: 2018-04-12; просмотров: 338.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...